Skip to main content

Rank, Trace-Norm and Max-Norm

  • Conference paper
Learning Theory (COLT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3559))

Included in the following conference series:

Abstract

We study the rank, trace-norm and max-norm as complexity measures of matrices, focusing on the problem of fitting a matrix with matrices having low complexity. We present generalization error bounds for predicting unobserved entries that are based on these measures. We also consider the possible relations between these measures. We show gaps between them, and bounds on the extent of such gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Srebro, N., Rennie, J., Jaakkola, T.: Maximum margin matrix factorization. In: Advances In Neural Information Processing Systems, vol. 17 (2005)

    Google Scholar 

  2. Srebro, N., Alon, N., Jaakkola, T.: Generalization error bounds for collaborative prediction with low-rank matrices. In: Advances In Neural Information Processing Systems, vol. 17 (2005)

    Google Scholar 

  3. Arriaga, R.I., Vempala, S.: An algorithmic theory of learning: Robust concepts and random projection. In: Proc. of the 40th Foundations of Computer Science (1999)

    Google Scholar 

  4. Ben-David, S., Eiron, N., Simon, H.U.: Limitations of learning via embeddings in euclidean half spaces. JMLR 3, 441–461 (2002)

    Article  MathSciNet  Google Scholar 

  5. Forster, J., Schmitt, N., Simon, H.U., Suttorp, T.: Estimating the optimal margins of embeddings in euclidean half spaces. Machine Learning 51, 263–281 (2003)

    Article  MATH  Google Scholar 

  6. Forster, J., Simon, H.U.: On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes uniform distribution. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 128–138. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures of sign matrices (2004), http://www.cs.huji.ac.il/~nati/PAPERS

  8. Alon, N., Frankl, P., Rödel, V.: Geometrical realization of set systems and probabilistic communication complexity. In: Proceedings of the 26th Annual Symposium on the Foundations of Computer Science (FOCS), pp. 227–280 (1985)

    Google Scholar 

  9. Srebro, N.: Learning with Matrix Factorization. PhD thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  10. Seginer, Y.: The expected norm of random matrices. Comb. Probab. Comput. 9, 149–166 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Panchenko, D., Koltchinskii, V.: Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics 30 (2002)

    Google Scholar 

  12. Pisier, G.: Factorization of linear operators and geometry of Banach spaces. In: Conference Board of the Mathemacial Sciences, vol. 60 (1986)

    Google Scholar 

  13. Awerbuch, B., Kleinberg, R.: Adaptive routing with end-to-end feedback: Distributed learning and geometric approaches. In: Proceedings of the 36th ACM Symposium on Theory of Computing, STOC (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srebro, N., Shraibman, A. (2005). Rank, Trace-Norm and Max-Norm. In: Auer, P., Meir, R. (eds) Learning Theory. COLT 2005. Lecture Notes in Computer Science(), vol 3559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11503415_37

Download citation

  • DOI: https://doi.org/10.1007/11503415_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26556-6

  • Online ISBN: 978-3-540-31892-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics