Skip to main content

Mind Change Efficient Learning

  • Conference paper
Learning Theory (COLT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3559))

Included in the following conference series:

Abstract

This paper studies efficient learning with respect to mind changes. Our starting point is the idea that a learner that is efficient with respect to mind changes minimizes mind changes not only globally in the entire learning problem, but also locally in subproblems after receiving some evidence. Formalizing this idea leads to the notion of uniform mind change optimality. We characterize the structure of language classes that can be identified with at most α mind changes by some learner (not necessarily effective): A language class \({\mathcal L}\) is identifiable with α mind changes iff the accumulation order of \({\mathcal L}\) is at most α. Accumulation order is a classic concept from point-set topology. To aid the construction of learning algorithms, we show that the characteristic property of uniformly mind change optimal learners is that they output conjectures (languages) with maximal accumulation order. We illustrate the theory by describing mind change optimal learners for various problems such as identifying linear subspaces and one-variable patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A., Jain, S., Sharma, A.: Ordinal mind change complexity of language identification. Theor. Comput. Sci. 220(2), 323–343 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21(1), 46–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45(2), 117–135 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Apsitis, K.: Derived sets and inductive inference. In: Arikawa, S., Jantke, K.P. (eds.) AII 1994 and ALT 1994. LNCS, vol. 872, pp. 26–39. Springer, Heidelberg (1994)

    Google Scholar 

  5. Baliga, G., Case, J., Jain, S.: The synthesis of language learners. Information and Computation 152, 16–43 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cantor, G.: Grundlagen einer allgemeinen Mannigfaltigkeitslehre. In: Ewald, W. (ed.) From Kant to Hilbert, vol. 2, pp. 878–920. Oxford Science Publications (1996)

    Google Scholar 

  7. Freivalds, R., Kinber, E., Smith, C.H.: On the intrinsic complexity of learning. Inf. Comput. 123(1), 64–71 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freivalds, R., Smith, C.H.: On the role of procrastination in machine learning. Inf. Comput. 107(2), 237–271 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)

    Article  MATH  Google Scholar 

  10. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn, 2nd edn. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Jain, S., Sharma, A.: The intrinsic complexity of language identification. J. Comput. Syst. Sci. 52(3), 393–402 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jain, S., Sharma, A.: Mind change complexity of learning logic programs. TCS 284(1), 143–160 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jayanthan, A.J.: Derived length for arbitrary topological spaces. International Journal of Mathematics and Mathematical Sciences 15(2), 273–277 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kelly, K.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  15. Kelly, K.: Efficient convergence implies Ockham’s Razor. In: Proceedings of the 2002 International Workshop on Computation Models of Scientific Reasoning and Applications, pp. 24–27 (2002)

    Google Scholar 

  16. Kelly, K.: Justification as truth-finding efficiency: How ockham’s razor works. Minds and Machines 14(4), 485–505 (2004)

    Article  Google Scholar 

  17. Kocabas, S.: Conflict resolution as discovery in particle physics. Machine Learning 6, 277–309 (1991)

    Google Scholar 

  18. Kuratowski, K.: Topology, vol. 1. Academic Press, London (1966); Translated by J. Jaworowski

    Google Scholar 

  19. Lange, S., Zeugmann, T.: Language learning with a bounded number of mind changes. In: Symposium on Theoretical Aspects of Computer Science, pp. 682–691 (1993)

    Google Scholar 

  20. Martin, E., Osherson, D.N.: Elements of Scientific Inquiry. The MIT Press, Cambridge (1998)

    Google Scholar 

  21. Martin, E., Sharma, A., Stephan, F.: Learning, logic, and topology in a common framework. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 248–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity: corrigendum to identification of unions. In: Proceedings of COLT 1991, p. 375. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  23. Mukouchi, Y.: Inductive inference with bounded mind changes. In: Doshita, S., Nishida, T., Furukawa, K., Jantke, K.P. (eds.) ALT 1992. LNCS, vol. 743, pp. 125–134. Springer, Heidelberg (1993)

    Google Scholar 

  24. Odifreddi, P.: Classical Recursion Theory. North-Holland, Amsterdam (1999)

    MATH  Google Scholar 

  25. Osherson, D.N., Stob, M., Weinstein, S.: Systems that learn: an introduction to learning theory for cognitive and computer scientists. MIT Press, Cambridge (1986)

    Google Scholar 

  26. Schulte, O.: Automated discovery of conservation principles and new particles in particle physics. Manuscript submitted to Machine Learning (2005)

    Google Scholar 

  27. Valdés-Pérez, R.: Algebraic reasoning about reactions: Discovery of conserved properties in particle physics. Machine Learning 17, 47–67 (1994)

    Google Scholar 

  28. Valdés-Pérez, R.: On the justification of multiple selection rules of conservation in particle physics phenomenology. Computer Physics Communications 94, 25–30 (1996)

    Article  Google Scholar 

  29. Wright, K.: Identification of unions of languages drawn from an identifiable class. In: Proceedings of the second annual workshop on Computational learning theory, pp. 328–333. Morgan Kaufmann Publishers Inc., San Francisco (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, W., Schulte, O. (2005). Mind Change Efficient Learning. In: Auer, P., Meir, R. (eds) Learning Theory. COLT 2005. Lecture Notes in Computer Science(), vol 3559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11503415_27

Download citation

  • DOI: https://doi.org/10.1007/11503415_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26556-6

  • Online ISBN: 978-3-540-31892-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics