Skip to main content

Learnability of Bipartite Ranking Functions

  • Conference paper
Learning Theory (COLT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3559))

Included in the following conference series:

Abstract

The problem of ranking, in which the goal is to learn a real-valued ranking function that induces a ranking or ordering over an instance space, has recently gained attention in machine learning. We define a model of learnability for ranking functions in a particular setting of the ranking problem known as the bipartite ranking problem, and derive a number of results in this model. Our first main result provides a sufficient condition for the learnability of a class of ranking functions \({\mathcal F}\): we show that \({\mathcal F}\) is learnable if its bipartite rank-shatter coefficients, which measure the richness of a ranking function class in the same way as do the standard VC-dimension related shatter coefficients (growth function) for classes of classification functions, do not grow too quickly. Our second main result gives a necessary condition for learnability: we define a new combinatorial parameter for a class of ranking functions \({\mathcal F}\) that we term the rank dimension of \({\mathcal F}\), and show that \({\mathcal F}\) is learnable only if its rank dimension is finite. Finally, we investigate questions of the computational complexity of learning ranking functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valiant, L.G.: A theory of the learnable. Communications of the ACM, 1134–1142 (1984)

    Google Scholar 

  2. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Journal of Artificial Intelligence Research 10, 243–270 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. Advances in Large Margin Classifiers, 115–132 (2000)

    Google Scholar 

  4. Crammer, K., Singer, Y.: Pranking with ranking. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 641–647. MIT Press, Cambridge (2002)

    Google Scholar 

  5. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 4, 933–969 (2003)

    Article  MathSciNet  Google Scholar 

  6. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM 36, 929–965 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Vapnik, V.N., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16, 264–280 (1971)

    Article  MATH  Google Scholar 

  8. Haussler, D.: Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation 100, 78–150 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kearns, M.J., Schapire, R.E., Sellie, L.M.: Toward efficient agnostic learning. Machine Learning 17, 115–141 (1994)

    MATH  Google Scholar 

  10. Pollard, D.: Convergence of Stochastic Processes. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  11. Kearns, M.J., Schapire, R.E.: Efficient distribution-free learning of probabilistic concepts. Journal of Computer and System Sciences 48, 464–497 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Alon, N., Ben-David, S., Cesa-Bianchi, N., Haussler, D.: Scale-sensitive dimensions, uniform convergence, and learnability. Journal of the ACM 44, 615–631 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bartlett, P.L., Long, P.M., Williamson, R.C.: Fat-shattering and the learnability of real-valued functions. Journal of Computer and System Sciences 52, 434–452 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D.: Generalization bounds for the area under the ROC curve. Journal of Machine Learning Research, 393–425 (2005)

    Google Scholar 

  15. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. In: Advances in Neural Information Processing Systems, vol. 16, MIT Press, Cambridge (2004)

    Google Scholar 

  16. Anthony, M., Bartlett, P.L.: Learning in Neural Networks: Theoretical Foundations. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  17. Agarwal, S.: A Study of the Bipartite Ranking Problem in Machine Learning. PhD thesis, University of Illinois at Urbana-Champaign (2005)

    Google Scholar 

  18. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  19. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. Journal of the ACM 35, 965–984 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, S., Roth, D. (2005). Learnability of Bipartite Ranking Functions. In: Auer, P., Meir, R. (eds) Learning Theory. COLT 2005. Lecture Notes in Computer Science(), vol 3559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11503415_2

Download citation

  • DOI: https://doi.org/10.1007/11503415_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26556-6

  • Online ISBN: 978-3-540-31892-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics