Advertisement

DPA Attacks and S-Boxes

  • Emmanuel Prouff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3557)

Abstract

For the power consumption model called Hamming weight model, we rewrite DPA attacks in terms of correlation coefficients between two Boolean functions. We exhibit properties of S-boxes (also called (n,m)-functions) relied on DPA attacks. We show that these properties are opposite to the non-linearity criterion and to the propagation criterion. To quantify the resistance of an S-box to DPA attacks, we introduce the notion of transparency order of an S -box and we study this new criterion with respect to the non-linearity and to the propagation criterion.

Keywords

Boolean Function Smart Card Block Cipher Bend Function Weight Enumerator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akkar, M.-L., Bévan, R., Dischamp, P., Moyart, D.: Power analysis, what is now possible. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener [33], pp. 398–412Google Scholar
  5. 5.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Koç and Paar [15], pp. 252–263Google Scholar
  6. 6.
    Coron, J.-S., Kocher, P., Naccache, D.: Statistics and secret leakage. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, p. 157. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Evertse, J.: Linear structures in block ciphers. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 249–266. Springer, Heidelberg (1988)Google Scholar
  8. 8.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication Method. In: Koç and Paar [14], pp. 158–172Google Scholar
  9. 9.
    Guilley, S., Hoogvorst, P., Pascalet, R.: Differential power analysis model and some results. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., Kalam, A.E. (eds.) Smart Card Research and Advanced Applications VI – CARDIS 2004, pp. 127–142. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  10. 10.
    Harpes, C.: Cryptanalysis of iterated block ciphers. In: ETH Series in Information Processing, vol. 7. Hartung-Gorre Verlag, Konstanz (1996)Google Scholar
  11. 11.
    Hasan, A.A.: Power analysis attacks and algorithmic approaches to their countermeasures for Koblitz cryptosystems. In: Koç and Paar [15], pp. 93–108Google Scholar
  12. 12.
    Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Handbook of coding theory, Vol. II, pp. 1765–1853. North-Holland, Amsterdam (1998)Google Scholar
  13. 13.
    Knudsen, L.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener [33], pp. 388–397.Google Scholar
  16. 16.
    Kukorelly, Z.: On the validity of certain hypotheses used in linear cryptanalysis. In: ETH Series in Information Processing, vol. 13. Hartung-Gorre Verlag, Konstanz (1999)Google Scholar
  17. 17.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Symposium on Communication, Coding and Cryptography (1994); en l’honneur de J.L. Massey à l’occasion de son 60ème anniversaireGoogle Scholar
  18. 18.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland Mathematical Library, vol. 16. North-Holland Publishing Co., Amsterdam (1977)zbMATHGoogle Scholar
  19. 19.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  20. 20.
    Mayer Sommer, R.: Smartly Analyzing the Simplicity and the Power of Simple Power Analysis on Smartcards. In: Koç and Paar [15], pp. 78–92Google Scholar
  21. 21.
    Messerges, T.: Power Analysis Attacks and Countermeasures for Cryptographic Algorithms. PhD thesis, University of Illinois (2000)Google Scholar
  22. 22.
    Messerges, T., Dabbish, E., Sloan, R.: Investigations of Power Analysis Attacks on Smartcards. In: The USENIX Workshop on Smartcard Technology (Smartcard 1999), pp. 151–161 (1999)Google Scholar
  23. 23.
    Messerges, T., Dabbish, E., Sloan, R.: Power Analysis Attacks of Modular Exponentiation in Smartcard. In: Koç and Paar [14], pp. 144–157Google Scholar
  24. 24.
    Messerges, T., Dabbish, E., Sloan, R.: Examining Smart-Card Security under the Threat of Power Analysis Attacks. IEEE Transactions on Computers 51(5) (May 2002)Google Scholar
  25. 25.
    National Bureau of Standards. FIPS PUB 46: The Data Encryption Standard (January 1977)Google Scholar
  26. 26.
    National Institute of Standards and Technology. FIPS PUB 197: Advanced Encryption Standard (2001)Google Scholar
  27. 27.
    Oswald, E.: On Side-Channel Attacks and the Application of Algorithmic Countermeasures. PhD thesis, Institute for Applied Information Processing and Communications - Graz University of Technology (May 2003)Google Scholar
  28. 28.
    Preneel, B., Govaerts, R., Vandewalle, J.: Boolean functions satisfying higher order propagation criteria. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 141–152. Springer, Heidelberg (1985)Google Scholar
  29. 29.
    Rothaus, O.S.: On bent functions. Journal of Combinatorial Theory 20a, 300–305 (1976)MathSciNetGoogle Scholar
  30. 30.
    Webster, A.F., Tavares, S.: On the design of S-boxes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Emmanuel Prouff
    • 1
  1. 1.Oberthur Card SystemsPuteauxFrance

Personalised recommendations