A Side-Channel Analysis Resistant Description of the AES S-Box

  • Elisabeth Oswald
  • Stefan Mangard
  • Norbert Pramstaller
  • Vincent Rijmen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3557)


So far, efficient algorithmic countermeasures to secure the AES algorithm against (first-order) differential side-channel attacks have been very expensive to implement. In this article, we introduce a new masking countermeasure which is not only secure against first-order side-channel attacks, but which also leads to relatively small implementations compared to other masking schemes implemented in dedicated hardware.

Our approach is based on shifting the computation of the finite field inversion in the AES S-box down to GF(4). In this field, the inversion is a linear operation and therefore it is easy to mask.

Summarizing, the new masking scheme combines the concepts of multiplicative and additive masking in such a way that security against first-order side-channel attacks is maintained, and that small implementations in dedicated hardware can be achieved.


AES side-channel analysis masking schemes 


  1. 1.
    Akkar, M.-L., Bévan, R., Goubin, L.: Two power analysis attacks against one-mask methods. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 332–347. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Blömer, J., Merchan, J.G., Krummel, V.: Provably Secure Masking of AES. Cryptology ePrint Archive, Report 2004/101 (2004),
  4. 4.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Conway, J.H.: On Numbers and Games, 2nd edn. AK Peters (2001)Google Scholar
  6. 6.
    Golić, J.D., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Itoh, T., Tsujiis, S.: A Fast Algorithm for Computing Multiplicative Inverses in GF(2m) Using Normal Bases. Information and Computation 78(3), 171–177 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Oswald, E., Mangard, S., Pramstaller, N.: Secure and Efficient Masking of AES – A Mission Impossible? Cryptology ePrint Archive, Report 2004/134 (2004),
  10. 10.
    Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen (1994)Google Scholar
  11. 11.
    Pramstaller, N., Gürkaynak, F.K., Haene, S., Kaeslin, H., Felber, N., Fichtner, W.: Towards an AES Crypto-chip Resistant to Differential Power Analysis. In: Proccedings 30th European Solid-State Circuits Conference - ESSCIRC 2004, Leuven, Belgium (2004) (to appear)Google Scholar
  12. 12.
    Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact rijndael hardware architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Trichina, E., De Seta, D., Germani, L.: Simplified Adaptive Multiplicative Masking for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 187–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic level: Next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES sBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Elisabeth Oswald
    • 1
  • Stefan Mangard
    • 1
  • Norbert Pramstaller
    • 1
  • Vincent Rijmen
    • 1
    • 2
  1. 1.Institute for Applied Information Processing and Communciations (IAIK)TU GrazGrazAustria
  2. 2.Cryptomathic A/S Jægergårdsgade 118Århus CDenmark

Personalised recommendations