Advertisement

Small Scale Variants of the AES

  • C. Cid
  • S. Murphy
  • M. J. B. Robshaw
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3557)

Abstract

In this paper we define small scale variants of the AES. These variants inherit the design features of the AES and provide a suitable framework for comparing different cryptanalytic methods. In particular, we provide some preliminary results and insights when using off-the-shelf computational algebra techniques to solve the systems of equations arising from these small scale variants.

Keywords

Equation System Block Cipher Advance Encryption Standard Small Scale Variant Algebraic Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cid, C., Murphy, S., Robshaw, M.J.B.: Computational and Algebraic Aspects of the Advanced Encryption Standard. In: Ganzha, V., et al. (eds.) Proceedings of the Seventh International Workshop on Computer Algebra in Scientific Computing - CASC 2004, Technische Universität München, pp. 93–103. St. Petersburg, Russia (2004)Google Scholar
  2. 2.
    Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics, 2nd edn. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption Standard. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  5. 5.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra 139, 61–88 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Magma V2.11-1, Computational Algebra Group, School of Mathematics and Statistics, University of Sydney (2004), Website http://magma.maths.usyd.edu.au
  7. 7.
    Murphy, S., Robshaw, M.J.B.: New Observations on Rijndael. Submitted to NIST (August 7, 2000), Available via csrc.nist.gov
  8. 8.
    Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 11–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Murphy, S., Robshaw, M.J.B.: Comments on the Security of the AES and the XSL Technique. Electronics Letters 39, 36–38 (2002)CrossRefGoogle Scholar
  10. 10.
    Musa, M.A., Schaefer, E.F., Wedig, S.: A simplified AES algorithm and its linear and differential cryptanalysis. Cryptologia XXVII (2), 148–177 (2003)CrossRefGoogle Scholar
  11. 11.
    National Institute of Standards and Technology. In: Advanced Encryption Standard. FIPS, vol. 197 (November 26, 2001)Google Scholar
  12. 12.
    Phan, R.C.-W.: Mini Advanced Encryption Standard (Mini-AES): A Testbed for Cryptanalysis Students. Cryptologia XXVI (4), 283–306 (2002)CrossRefGoogle Scholar
  13. 13.
    Steel, A.: Magma Development Team. Personal communication (October 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Cid
    • 1
  • S. Murphy
    • 1
  • M. J. B. Robshaw
    • 1
  1. 1.Information Security Group, Royal HollowayUniversity of LondonEghamUK

Personalised recommendations