Skip to main content

Models for ALD and MOCVD Growthof Rare Earth Oxides

  • Chapter
  • First Online:
Rare Earth Oxide Thin Films

Part of the book series: Topics in Applied Physics ((TAP,volume 106))

Abstract

Atomic layer deposition (ALD) and metal organic chemical vapour deposition (MOCVD) are suitable techniques for the controlled deposition of high-quality oxide films. Increasingly, modelling is being used to complement deposition experiments, and a brief overview of modelling approaches is presented here. The main focus is on atomic-scale models using ab initio electronic structure theory to investigate the reaction steps involved in growth, in particular precursor adsorption and elimination of by-products. The common water-based ALD process is considered, using simulations of the ALD of alumina from trimethylaluminium and water as a specific example. In addition, analytical models of film growth are reviewed. Finally, models for gas transport within the reactor are presented, with the possibility of incorporating feature-scale and atomic-scale descriptions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. M. Martin: Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, Cambridge 2004)

    Google Scholar 

  • S. D. Elliott: First principles modelling of the deposition process for high-k dielectric films, Electrochem. Soc. Proc. 2003-14, 231 (2003)

    CAS  Google Scholar 

  • A. Y. Timoshkin, H. F. Bettinger, H. F. Schaefer, III: The chemical vapor deposition of aluminium nitride: unusual cluster formation in the gas phase, J. Am. Chem. Soc. 119, 5668–5678 (1997)

    Article  CAS  Google Scholar 

  • A. Y. Timoshkin, H. F. Bettinger, H. F. Schaefer, III: DFT modeling of chemical vapor deposition of GaN from organogallium precursors. 1. Thermodynamics of elimination reactions, J. Phys. Chem. A 105, 3240–3248 (2001)

    Article  CAS  Google Scholar 

  • S. D. Elliott, J. C. Greer: Simulating the atomic layer deposition of alumina from first principles, J. Mater. Chem. 14, 3246–3250 (2004)

    Article  CAS  Google Scholar 

  • A. Heyman, C. B. Musgrave: A quantum chemical study of the atomic layer deposition of Al2O3 using AlCl3 and H2O as precursors, J. Phys. Chem. B 108, 5718–5725 (2004)

    Article  CAS  Google Scholar 

  • G. Mazaleyrat, A. Est`eve, L. Jeloaica, M. Djafari-Rouhani: A methodology for the kinetic Monte Carlo simulation of alumina atomic layer deposition onto silicon, Comp. Mater. Sci. 33, 74–82 (2005)

    Article  CAS  Google Scholar 

  • M. Deminsky, A. Knizhnik, I. Belov, S. Umanskii, E. Rykova, A. Bagatur'yants, B. Potapkin, M. Stoker, A. Korkin: Mechanism and kinetics of thin zirconium and hafnium oxide film growth in an ALD reactor, Surf. Sci. 549, 67–86 (2004)

    Article  CAS  Google Scholar 

  • Y. Widjaja, C. B. Musgrave: Quantum chemical study of the mechanism of aluminium oxide atomic layer deposition, Appl. Phys. Lett. 80, 3304–3306 (2002)

    Article  CAS  Google Scholar 

  • M. D. Halls, K. Raghavachari: Importance of steric effects in cluster models of silicon surface chemistry: ONIOM studies of the atomic layer deposition of Al2O3 on H/Si(111), J. Phys. Chem. A 108, 2982–2987 (2004)

    Article  CAS  Google Scholar 

  • G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli, I. L. Fedushkin, H. Schumann, Y. Lebedinskii, A. Zenkevich: Atomic-layer deposition of Lu2O3, Appl. Phys. Lett. 85, 630–632 (2004)

    Article  CAS  Google Scholar 

  • S. D. Elliott, G. Scarel, C. Wiemer, M. Fanciulli, T. Lebedinskii, A. Zenkevich, I. L. Fedushkin: Precursor combinations for ALD of rare earth oxides and silicates - a quantum chemical and X-ray study, in (Proc. Electrochem. Soc. 2005)

    Google Scholar 

  • T. R. Cundari, S. O. Sommerer: Quantum modeling of the CVD of transition metal materials, Chem. Vap. Dep. 3, 183–192 (1997)

    Article  CAS  Google Scholar 

  • R. L. Puurunen: Growth per cycle in atomic layer deposition: real application examples of a theoretical model, Chem. Vap. Depos. 9, 327–332 (2003)

    Article  CAS  Google Scholar 

  • R. L. Puurunen: Surface chemistry of atomic layer deposition: a case study for the trimethylaluminium/water process, J. Appl. Phys. 97, 121301 (2005)

    Article  Google Scholar 

  • L. Jeloaica, A. Est`eve, M. D. Rouhani, D. Esteve: Density functional theory study of HfCl4, ZrCl4, and Al(CH3)3 decomposition on hydroxylated SiO2: Initial stage of high-k ALD, Appl. Phys. Lett. 83, 542–544 (2003)

    Article  CAS  Google Scholar 

  • V. V. Brodskii, E. A. Rykova, A. A. Bagatur'yants, A. A. Korkin: Modelling of ZrO2 deposition from ZrCl4 and H2O the Si(100) surface: initial reactions and surface structures, Comp. Mater. Sci. 24, 278–283 (2002)

    Article  CAS  Google Scholar 

  • J. H. Han, G. L. Gao, Y. Widjaja, E. Garfunkel, C. B. Musgrave: A quantum chemical study of ZrO2 atomic layer deposition growth reactions on the SiO2 surface, Surf. Sci. 550, 199–212 (2004)

    Article  CAS  Google Scholar 

  • M. L. G. M. A. Alam: Mathematical description of atomic layer deposition and its application to the nucleation and growth of HfO2 gate dielectric layers, J. Appl. Phys. 94, 3403–3413 (2003)

    Article  Google Scholar 

  • R. L. Puurunen, et al.: Island growth in the atomic layer deposition of zirconium oxide and aluminium oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy, J. Appl. Phys. 96, 4878–4889 (2004)

    Article  CAS  Google Scholar 

  • A. A. Knizhnik, A. A. Bagaturyants, I. V. Belov, B. V. Potapkin, A. A. Korkin: An integrated kinetic Monte Carlo molecular dynamics approach for film growth modeling and simulation: ZrO2 deposition on Si(100) surface, Comp. Mater. Sci. 24, 128–132 (2002)

    Article  CAS  Google Scholar 

  • M. Yliliammi: Monolayer thickness in atomic layer deposition, Thin Solid Films 279, 124–130 (1996)

    Article  Google Scholar 

  • R. L. Puurunen: Growth per cycle in atomic layer deposition: a theoretical model, Chem. Vap. Depos. 9, 249–257 (2003)

    Article  CAS  Google Scholar 

  • S. D. Elliott: Predictive process design: A theoretical model of atomic layer deposition, Comp. Mater. Sci. 33, 20–25 (2005)

    Article  CAS  Google Scholar 

  • A. Rahtu, T. Alaranta, M. Ritala: In situ quartz crystal microbalance and quadrupole mass spectrometry studies of ALD of aluminium oxide from TMA and water, Langmuir 17, 6506–6509 (2001)

    Article  CAS  Google Scholar 

  • H.-S. Park, J.-S. Min, J.-W. Lim, S.-W. Kang: Theoretical evaluation of film growth rate during atomic layer epitaxy, Appl. Surf. Sci. 158, 81–91 (2000)

    Article  CAS  Google Scholar 

  • M. Ahr, M. Biehl: Modelling sublimation and atomic layer epitaxy in the presence of competing surface reconstructions, Surf. Sci. 488, L553–L560 (2001)

    Article  CAS  Google Scholar 

  • G. Prechtl, A. Kersch, G. S. Icking-Konert, W. Jacobs, T. Hecht, H. Boubekeur, U. Schröder: A model for Al2O3 ALD conformity and deposition rate from oxygen precursor reactivity, in 2003 IEDM Techn. Digest (2003) pp. 245–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco Fanciulli Giovanna Scarel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Elliott, S.D. Models for ALD and MOCVD Growthof Rare Earth Oxides. In: Fanciulli, M., Scarel, G. (eds) Rare Earth Oxide Thin Films. Topics in Applied Physics, vol 106. Springer, Berlin, Heidelberg . https://doi.org/10.1007/11499893_5

Download citation

Publish with us

Policies and ethics