Models for ALD and MOCVD Growthof Rare Earth Oxides

Part of the Topics in Applied Physics book series (TAP, volume 106)


Atomic layer deposition (ALD) and metal organic chemical vapour deposition (MOCVD) are suitable techniques for the controlled deposition of high-quality oxide films. Increasingly, modelling is being used to complement deposition experiments, and a brief overview of modelling approaches is presented here. The main focus is on atomic-scale models using ab initio electronic structure theory to investigate the reaction steps involved in growth, in particular precursor adsorption and elimination of by-products. The common water-based ALD process is considered, using simulations of the ALD of alumina from trimethylaluminium and water as a specific example. In addition, analytical models of film growth are reviewed. Finally, models for gas transport within the reactor are presented, with the possibility of incorporating feature-scale and atomic-scale descriptions as well.


71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. M. Martin: Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, Cambridge 2004) Google Scholar
  2. S. D. Elliott: First principles modelling of the deposition process for high-k dielectric films, Electrochem. Soc. Proc. 2003-14, 231 (2003) Google Scholar
  3. A. Y. Timoshkin, H. F. Bettinger, H. F. Schaefer, III: The chemical vapor deposition of aluminium nitride: unusual cluster formation in the gas phase, J. Am. Chem. Soc. 119, 5668–5678 (1997) CrossRefGoogle Scholar
  4. A. Y. Timoshkin, H. F. Bettinger, H. F. Schaefer, III: DFT modeling of chemical vapor deposition of GaN from organogallium precursors. 1. Thermodynamics of elimination reactions, J. Phys. Chem. A 105, 3240–3248 (2001) CrossRefGoogle Scholar
  5. S. D. Elliott, J. C. Greer: Simulating the atomic layer deposition of alumina from first principles, J. Mater. Chem. 14, 3246–3250 (2004) CrossRefGoogle Scholar
  6. A. Heyman, C. B. Musgrave: A quantum chemical study of the atomic layer deposition of Al2O3 using AlCl3 and H2O as precursors, J. Phys. Chem. B 108, 5718–5725 (2004) CrossRefGoogle Scholar
  7. G. Mazaleyrat, A. Est`eve, L. Jeloaica, M. Djafari-Rouhani: A methodology for the kinetic Monte Carlo simulation of alumina atomic layer deposition onto silicon, Comp. Mater. Sci. 33, 74–82 (2005) CrossRefGoogle Scholar
  8. M. Deminsky, A. Knizhnik, I. Belov, S. Umanskii, E. Rykova, A. Bagatur'yants, B. Potapkin, M. Stoker, A. Korkin: Mechanism and kinetics of thin zirconium and hafnium oxide film growth in an ALD reactor, Surf. Sci. 549, 67–86 (2004) CrossRefGoogle Scholar
  9. Y. Widjaja, C. B. Musgrave: Quantum chemical study of the mechanism of aluminium oxide atomic layer deposition, Appl. Phys. Lett. 80, 3304–3306 (2002) CrossRefGoogle Scholar
  10. M. D. Halls, K. Raghavachari: Importance of steric effects in cluster models of silicon surface chemistry: ONIOM studies of the atomic layer deposition of Al2O3 on H/Si(111), J. Phys. Chem. A 108, 2982–2987 (2004) CrossRefGoogle Scholar
  11. G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli, I. L. Fedushkin, H. Schumann, Y. Lebedinskii, A. Zenkevich: Atomic-layer deposition of Lu2O3, Appl. Phys. Lett. 85, 630–632 (2004) CrossRefGoogle Scholar
  12. S. D. Elliott, G. Scarel, C. Wiemer, M. Fanciulli, T. Lebedinskii, A. Zenkevich, I. L. Fedushkin: Precursor combinations for ALD of rare earth oxides and silicates - a quantum chemical and X-ray study, in (Proc. Electrochem. Soc. 2005) Google Scholar
  13. T. R. Cundari, S. O. Sommerer: Quantum modeling of the CVD of transition metal materials, Chem. Vap. Dep. 3, 183–192 (1997) CrossRefGoogle Scholar
  14. R. L. Puurunen: Growth per cycle in atomic layer deposition: real application examples of a theoretical model, Chem. Vap. Depos. 9, 327–332 (2003) CrossRefGoogle Scholar
  15. R. L. Puurunen: Surface chemistry of atomic layer deposition: a case study for the trimethylaluminium/water process, J. Appl. Phys. 97, 121301 (2005) CrossRefGoogle Scholar
  16. L. Jeloaica, A. Est`eve, M. D. Rouhani, D. Esteve: Density functional theory study of HfCl4, ZrCl4, and Al(CH3)3 decomposition on hydroxylated SiO2: Initial stage of high-k ALD, Appl. Phys. Lett. 83, 542–544 (2003) CrossRefGoogle Scholar
  17. V. V. Brodskii, E. A. Rykova, A. A. Bagatur'yants, A. A. Korkin: Modelling of ZrO2 deposition from ZrCl4 and H2O the Si(100) surface: initial reactions and surface structures, Comp. Mater. Sci. 24, 278–283 (2002) CrossRefGoogle Scholar
  18. J. H. Han, G. L. Gao, Y. Widjaja, E. Garfunkel, C. B. Musgrave: A quantum chemical study of ZrO2 atomic layer deposition growth reactions on the SiO2 surface, Surf. Sci. 550, 199–212 (2004) CrossRefGoogle Scholar
  19. M. L. G. M. A. Alam: Mathematical description of atomic layer deposition and its application to the nucleation and growth of HfO2 gate dielectric layers, J. Appl. Phys. 94, 3403–3413 (2003) CrossRefGoogle Scholar
  20. R. L. Puurunen, et al.: Island growth in the atomic layer deposition of zirconium oxide and aluminium oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy, J. Appl. Phys. 96, 4878–4889 (2004) CrossRefGoogle Scholar
  21. A. A. Knizhnik, A. A. Bagaturyants, I. V. Belov, B. V. Potapkin, A. A. Korkin: An integrated kinetic Monte Carlo molecular dynamics approach for film growth modeling and simulation: ZrO2 deposition on Si(100) surface, Comp. Mater. Sci. 24, 128–132 (2002) CrossRefGoogle Scholar
  22. M. Yliliammi: Monolayer thickness in atomic layer deposition, Thin Solid Films 279, 124–130 (1996) CrossRefGoogle Scholar
  23. R. L. Puurunen: Growth per cycle in atomic layer deposition: a theoretical model, Chem. Vap. Depos. 9, 249–257 (2003) CrossRefGoogle Scholar
  24. S. D. Elliott: Predictive process design: A theoretical model of atomic layer deposition, Comp. Mater. Sci. 33, 20–25 (2005) CrossRefGoogle Scholar
  25. A. Rahtu, T. Alaranta, M. Ritala: In situ quartz crystal microbalance and quadrupole mass spectrometry studies of ALD of aluminium oxide from TMA and water, Langmuir 17, 6506–6509 (2001) CrossRefGoogle Scholar
  26. H.-S. Park, J.-S. Min, J.-W. Lim, S.-W. Kang: Theoretical evaluation of film growth rate during atomic layer epitaxy, Appl. Surf. Sci. 158, 81–91 (2000) CrossRefGoogle Scholar
  27. M. Ahr, M. Biehl: Modelling sublimation and atomic layer epitaxy in the presence of competing surface reconstructions, Surf. Sci. 488, L553–L560 (2001) CrossRefGoogle Scholar
  28. G. Prechtl, A. Kersch, G. S. Icking-Konert, W. Jacobs, T. Hecht, H. Boubekeur, U. Schröder: A model for Al2O3 ALD conformity and deposition rate from oxygen precursor reactivity, in 2003 IEDM Techn. Digest (2003) pp. 245–248 Google Scholar

Authors and Affiliations

  1. 1.Tyndall National InstituteUniversity CollegeCorkIreland

Personalised recommendations