MOCVD Growth of Rare Earth Oxides:The Case of the Praseodymium/Oxygen System

Part of the Topics in Applied Physics book series (TAP, volume 106)


Chemical Vapor Deposition (CVD) uses one or more gaseous species (precursors) to form on a substrate, solid phase materials through an activated process. While today a large variety of precursors is known and rather complex deposition routes are involved, a user-friendly classification of precursor compounds as well as a viable discussion of their physical and chemical characteristics can be useful to MOCVD practitioners.

In this Chapter, an overview of both the exploitation and challenges of MOCVD fabrication of praseodymium oxides will be highlighted from different points of view, including the more suited precursors, the synthesis of thin films and their stability on silicon substrates.


71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Kimura, F. Arai, M. Ikezawa: Optical study on electronic structure of rare-earth sesquioxides, J. Phys. Soc. Jpn. 69, 3451 (2000) CrossRefGoogle Scholar
  2. H. L. Wan, X. P. Zhou, W. Z. Weng, R. Q. Long, Z. S. Chao, W. D. Zhang, M. S. Chem, J. Z. Luo, S. Q. Zhou: Catalytic performance, structure, surface properties and active oxygen species of the fluoride-containing rare earth (alkaline earth)-based catalysts for the oxidative coupling of methane and oxidative dehydrogenation of light alkanes, Catal. Today 51, 161 (1999) CrossRefGoogle Scholar
  3. J. Robertson: Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B 18, 1785 (2000) CrossRefGoogle Scholar
  4. S. Chevalier, G. Bonnet, J. P. Larpin: Metal-organic chemical vapor deposition of Cr2 3 and Nd2 3 coatings. Oxide growth kinetics and characterization, Appl. Surf. Sci. 167, 125 (2000) CrossRefGoogle Scholar
  5. S. Jeon, K. Im, H. Yang, H. Lee, H. Sim, S. Choi, T. Jang, H. Hwang: Excellent electrical characteristics of lanthanide (Pr, Nd, Sm, Gd and Dy) oxide and lanthanide-doped oxide for MOS gate dielectric applications, Proc. IEDM Tech. Dig. p. 471 (2001) Google Scholar
  6. H. O. Pierson: Handbook of Chemical Vapor Deposition (Noesy, New York 1992) Google Scholar
  7. M. L. Hitchman, J. F. Jensen: Chemical Vapor Deposition: Principles and Applications (Academic Press, London 1993) Google Scholar
  8. R. G. Haier, L. Eyring: Handbook on the Physics and Chemistry of the Rare Earths (North-Holland, Amsterdam 1994) Google Scholar
  9. Z. C. Kang, L. Eyring: Fluorite structural principles: Disordered α -phase to ordered intermediate phases in praseodymia, J. Alloy and Comp. 275–277, 721 (1998) CrossRefGoogle Scholar
  10. L. Eyring, N. C. Baenzige: On the structure and related properties of the oxides of praseodymium, J. Appl. Phys. 33, 428 (1962) CrossRefGoogle Scholar
  11. N. Horio, M. Hiramatsu, M. Nawata, K. Imaeda, T. Torii: Preparation of zinc oxide metal oxide multilayered thin films for low-voltage varistors, Vacuum 51, 719 (1998) CrossRefGoogle Scholar
  12. C. W. Nahm: Electrical properties and stability of praseodymium oxide-based ZnO varistor ceramics doped with Er2 3, J. Eur. Ceram. Soc. 23, 1345 (2003) CrossRefGoogle Scholar
  13. D. W. Hwang, J. S. Lee, W. Li, S. H. Oh: Electronic band structure and photocatalytic activity of Ln(2)Ti(2)O(7) (Ln = La, Pr, Nd), J. Phys. Chem. B 107, 4963 (2003) CrossRefGoogle Scholar
  14. C. Qiu, H. Chen, Z. Xie, M. Wong, H. S. Kwok: Praseodymium oxide coated anode for organic light-emitting diode, Appl. Phys. Lett. 80, 3485 (2002) CrossRefGoogle Scholar
  15. H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, P. Zaumseil: High k gate dielectric with ultra-low leakage current based on praseodymium oxide, Proc. IEDM Tech. Dig. p. 653 (2000) Google Scholar
  16. G. Adachi, N. Imanaka: The binary rare earth oxides, Chem. Rev. 98, 1479 (1998) CrossRefGoogle Scholar
  17. H. J. Osten, J. P. Liu, H. J. Mussig: Band gap and band discontinuities at crystalline Pr2 3/Si(001) heterojunctions, Appl. Phys. Lett. 80, 297 (2002) CrossRefGoogle Scholar
  18. L. R. Morss: Thermochemical properties of yttrium, lanthanum and lanthanide elements and ions, Chem. Rev. 76, 827 (1976) CrossRefGoogle Scholar
  19. T. J. Marks: Coordination chemistry ruotes to films for superconducting electronics, Pure Appl. Chem. 67, 313 (1995) Google Scholar
  20. M. Tiitta, L. Niinisto: Volatile metal beta-diketonates: ALE and CVD precursors for electroluminescent device thin films, Chem. Vap. Dep. 3, 167 (1997) CrossRefGoogle Scholar
  21. J. A. Belot, D. A. Neumayer, C. J. Reedy, D. B. Studebaker, B. J. Hinds, C. L. Stern, T. J. Marks: Volatility by design. Synthesis and characterization of polyether adducts of bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)barium and their implementation as metal-organic chemical vapor deposition precursors, Chem. Mater. 9, 1638 (1997) CrossRefGoogle Scholar
  22. N. L. Edleman, A. C. Wang, J. A. Belot, A. W. Metz, J. R. Babcock, A. M. Kawaoka, J. Ni, M. V. Metz, C. J. Flaschenriem, C. L. Stern, L. M. Liable-Sands, A. L. Rheingold, P. R. Markworth, R. P. H. Chang, M. P. Chudzik, C. R. Kannewurf, T. J. Marks: Synthesis and characterization of volatile, fluorine-free beta-ketoiminate lanthanide MOCVD precursors and their implementation in low-temperature growth of epitaxial CeO2 buffer layers for superconducting electronics, Inorg. Chem. 41, 5005 (2002) CrossRefGoogle Scholar
  23. G. Malandrino, F. Castelli, I. L. Fragalà: A novel route to the 2nd generation alkaline-earth metal precursors for metal organic chemical vapor deposition: One step synthesis of M(hfa)2tetraglyme (M= Ba, Sr, Ca, and hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentadione), Inorg. Chim. Acta 224, 203 (1994) CrossRefGoogle Scholar
  24. S. B. Turnipseed, R. M. Barkley, R. E. Siever: Synthesis and characterization of alkaline-earth-metal beta-diketonate complexes used as precursors for chemical vapor deposition of thin films superconductors, Inorg. Chem. 30, 1164 (1991) CrossRefGoogle Scholar
  25. G. Rossetto, A. Polo, F. Bentollo, M. Porchia, P. Zanella: Studies on molecular barium precursors for MOCVD: Synthesis and characterization of barium 2,2,6,6-Tetramethyl-3,5- heptanedionate – X-ray crystal structure of [BA(THD)2.ET2]2, Polyhedron 11, 979 (1992) CrossRefGoogle Scholar
  26. G. Malandrino, C. Benelli, F. Castelli, I. L. Fragalà: Synthesis, characterizations, crystal structure and mass transport properties of lanthanum β-diketonate glyme complexes, volatile precursors for metal-organic chemical vapor deposition applications, Chem. Mater. 10, 3434 (1998) CrossRefGoogle Scholar
  27. G. Malandrino, R. L. Nigro, F. Castelli, I. L. Fragalà, C. Benelli: Volatile Ce(III)hexafluoroacetylacetonate glyme adducts as promising precursors for MOCVD deposition of CeO2 thin films, Chem. Vap. Dep. 6, 233 (2000) CrossRefGoogle Scholar
  28. K. D. Pollard, H. A. Jenkins, R. J. Puddephat: Chemical vapor deposition of cerium oxide using the precursors [Ce(hfac)3(glyme)], Chem. Mater. 12, 701 (2000) CrossRefGoogle Scholar
  29. G. Malandrino, O. Incontro, F. Castelli, I. L. Fragalà, C. Benelli: Synthesis, characterization and mass transport properties of two novel gadolinium(III) hexafluoroacetylacetonate polyether adducts: Promising precursors for MOCVD of GdF3 films, Chem. Mater. 8, 1292 (1996) CrossRefGoogle Scholar
  30. G. Malandrino, M. Bettinelli, A. Speghini, I. L. Fragalà: Europium ``second generation'' precursors for metal-organic chemical vapor deposition: Characterization and optical spectroscopy, Eur. J. Inorg. Chem. p. 1039 (2001) Google Scholar
  31. R. Lo Nigro, G. Malandrino, I. L. Fragalà: MOCVD of cerium dioxide (100) oriented films on random Hastelloy C 276, Chem. Mater. 13, 4402 (2001) CrossRefGoogle Scholar
  32. R. Lo Nigro, R. Toro, G. Malandrino, I. L. Fragalà: Heteroepitaxial growth of nanostructured cerium dioxide thin films by MOCVD on a (001) TiO2 substrate, Chem. Mater. 15, 1434 (2003) CrossRefGoogle Scholar
  33. G. Malandrino, I. L. Fragalà, P. Scardi: Heteroepitaxy of LaAlO3 (100) on SrTiO3 (100): situ growth of LaAlO3 thin films by metal-organic chemical vapor deposition from a liquid single-source, Chem. Mater. 10, 3765 (1998) CrossRefGoogle Scholar
  34. J. M. Zhang, F. DiMeo Jr, B. W. Wessels, D. L. Schultz, T. J. Marks, J. L. Schindler, C. R. Kanerwurf: A new route to high-Tc superconducting Bi–Sr–Ca–Cu–O thin films: improved deposition efficiency and film morphology using ammonia–argon mixtures as the carrier gas, J. Appl. Phys. 71, 2769 (1992) CrossRefGoogle Scholar
  35. S. B. Turnipseed, R. M. Barkley, R. E. Sievers: Synthesis and characterization of alkaline-earth-metal beta-diketonate complexes used as precursors for chemical vapor deposition of thin film superconductors, Inorg. Chem. 30, 1164 (1991) CrossRefGoogle Scholar
  36. S. Liang, C. S. Chern, Z. Q. Shi, P. Lu: Control of CeO2 growth by metalorganic chemical vapor deposition with a special source evaporator, J. Cryst. Growth 151, 359 (1995) CrossRefGoogle Scholar
  37. H. A. Luten, W. S. Rees Jr., V. L. Goedkend: Preparation and structural characterization, and chemical vapor deposition studies with, certain yttrium tris(beta-diketonate) compounds, Chem. Vap. Dep. 2, 149 (1996) CrossRefGoogle Scholar
  38. K. J. Eisentraut, R. E. Siever: Volatile rare earth chelates, J. Am. Chem. Soc. 87, 5254 (1965) CrossRefGoogle Scholar
  39. R. Lo Nigro, R. G. Toro, G. Malandrino, I. L. Fragalà: Study of the thermal properties of Pr(III) precursors and their implementation in the MOCVD growth of praseodymium oxide films, J. Electrochem. Soc. 151, F206 (2004) CrossRefGoogle Scholar
  40. R. Lo Nigro, R. G. Toro, G. Malandrino, V. Raineri, I. L. Fragalà: A simple route to the synthesis of Pr2 3 high-k films, Adv. Mater. 15, 1071 (2003) CrossRefGoogle Scholar
  41. R. Lo Nigro, R. G. Toro, G. Malandrino, G. G. Condorelli, V. Raineri, I. L. Fragalà: Praseodymium silicate as a high k dielectric candidate: An insight on the Pr2 3 film/Si substrate interface fabricated through an MOCVD process, Adv. Funct. Mater. 15, 838 (2005) CrossRefGoogle Scholar
  42. D. K. Fork, D. B. Fenner, T. H. Geballe: Growth of epitaxial PrO2 thin films on hydrogen terminated Si (111) by pulsed lased deposition, J. Appl. Phys. 68, 4316 (1990) CrossRefGoogle Scholar
  43. H. Ogasawara, A. Kotani, R. Potze, G. A. Sawatzky, B. T. Thole: Praseodymium 3D-core and 4D-core photoemission spectra of Pr2 3, Phys. Rew. B 44, 5465 (1991) CrossRefGoogle Scholar
  44. J. X. Wu, Z. M. Wang, F. Q. Li, M. S. Ma: Photoemission study of the oxidation and the post-annealing behaviors of a Pr-covered Si(100) surface, Appl. Surf. Sci. 225, 229 (2004) CrossRefGoogle Scholar
  45. S. Lütkehoff, M. Neumann, A. 'Slebarski: 3and 4 X-ray-photoelectron spectra of Pr under gradual oxidation, Phys. Rev. B 52, 13808 (1995) CrossRefGoogle Scholar
  46. G. F. Cerefolini, C. Galati, S. Lorenti, L. Renna, O. Viscuso, C. Bongiorno, V. Raineri, C. Spinella, G. G. Condorelli, I. L. Fragalà, A. Terrasi: The early oxynitridation stages of hydrogen-terminated (100) silicon after exposure to N2:N2O. III. Initial conditions, Appl. Phys. A 77, 403 (2003) CrossRefGoogle Scholar
  47. D. Schmeisser, H. J. Mussig: The Pr2 3/Si(001) interface studied by synchrotron radiation photo-electron spectroscopy, Solid State Electron. 47, 1607 (2003) CrossRefGoogle Scholar
  48. J. F. Malder, W. F. Stickel, P. E. Sobol, K. D. Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Proucie 1992) Google Scholar
  49. D. D. Sarma, C. N. R. Rao: XPES studies of oxides of 2nd-row and 3nd-row transition-metals including rare earths, J. Electron. Spectrosc. Relat. Phenom. 20, 25 (1980) CrossRefGoogle Scholar
  50. T. Gouguosi, D. Niu, R. W. Ashcraft, G. N. Parson: Carbonate formation during post-deposition ambient exposure of high-dielectrics, Appl. Phys. Lett. 83, 3543 (2003) CrossRefGoogle Scholar
  51. J. J. Chambers, G. N. Parson: Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon, J. Appl. Phys. 90, 918 (2001) CrossRefGoogle Scholar
  52. S. Jeon, H. Hwang: Electrical and physical characteristics of PrTix y for metal-oxide-semiconductor gate dielectric applications, Appl. Phys. Lett. 81, 4856 (2002) CrossRefGoogle Scholar
  53. A. Fissel, J. Dabrowski, H. J. Osten: Photoemission and initio theoretical study of interface and film formation during epitaxial growth and annealing of praseodymium oxide on Si(001), J. Appl. Phys. 91, 8986 (2002) CrossRefGoogle Scholar
  54. R. Lo Nigro, V. Raineri, C. Bongiorno, R. Toro, G. Malandrino, I. L. Fragalà: Dieletric properties of Pr2 3 high-k films grown by metalorganic chemical vapor deposition on silicon, Appl. Phys. Lett. 83, 129 (2003) CrossRefGoogle Scholar
  55. R. Lo Nigro, R. Toro, G. Malandrino, P. Fiorenza, V. Raineri, I. L. Fragalà: Effects of deposition temperature on the microstructural and electrical properties of praseodymium oxide based films, Mater. Sci. Eng. B 118, 117 (2005) CrossRefGoogle Scholar
  56. R. Lo Nigro, R. Toro, G. Malandrino, V. Raineri, I. L. Fragalà: Electrical properties of MOCVD praseodymium oxide based MOS structures, Proc. ESSDERC p. 375 (2003) Google Scholar
  57. D. Chadwick, J. McAleese, K. Senliw, B. C. H. Steele: On the application of XPS to ceria films grown by MOCVD using a fluorinated precursors, Appl. Surf. Sci. 99, 417 (1996) CrossRefGoogle Scholar
  58. Y. J. Cho, M. Noma, Y. Hamakawa: Filtered full-color thin-film electroluminescent device with ZnS:TbOF/ZnS:PrOF phosphor layers, Sensors Mater. 9, 25 (1997) Google Scholar
  59. S. Kuck, I. Sokolska: Room temperature emission from the Pr3+1S0-level in PrF3, Appl. Phys. A: Mater. Sci. Process. 77, 469 (2003) CrossRefGoogle Scholar
  60. G. Malandrino, R. Lo Nigro, P. Rossi, P. Dapporto, I. L. Fragalà: A volatile Pb(II) β-diketonate diglyme complex as a promising precursor of MOCVD of lead oxide films, Inorg. Chim. Acta 357, 3927 (2004) CrossRefGoogle Scholar
  61. M. E. Fragala, G. Compagnini, G. Malandrino, C. Spinella, O. Puglisi: Silver nanoparticles dispersed in polyimide thin film matrix, Eur. Phys J. D 9, 631 (1999) CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.CNR-IMMCataniaItaly
  2. 2.Chemistry DepartmentUniversity of CataniaCataniaItaly

Personalised recommendations