Advertisement

Atomic Layer Deposition of Rare Earth Oxides

Chapter
Part of the Topics in Applied Physics book series (TAP, volume 106)

Abstract

The principles of Atomic Layer Deposition (ALD) for thin film growth are briefly introduced, emphasizing the aspects of a self-limiting mechanism. Binary rare earth oxide (REO) thin films have been grown by ALD using various precursor approaches, which are discussed starting with the β-diketonates (thd-complexes) which require ozone to form the oxide. The focus of this review is on the most recent developments in the precursor chemistry, viz. the use of precursors which coordinate to the trivalent RE ions through carbon or nitrogen and react with water at reasonable temperatures, generally below 350°C, to produce the oxide. The growth rates obtained with RE-cyclopentadienyl complexes together with water as oxygen source are significantly higher than those observed in the conventional β-diketonate/ozone system, e.g., for Y2O3 using (CpMe)3Y/H2O and Y(thd)3/O3 the observed growth rates were 1.2–1.3 and 0.23Å cycle–1, respectively. Furthermore, the resulting REO films from the organometallics and nitrogen-coordinated precursors have lower carbon and hydrogen impurity levels and good electrical characteristics. However, poor thermal stability of the novel carbon- or nitrogen-coordinated precursors may restrict their use as ALD precursors.

In addition to the desired ALD-mode reactions, other reactions may occur causing some deleterious effects on the REO films. In particular, the large and basic La3+ ion tends to adsorb and react with environmental water and carbon dioxide to form hydroxide and carbonate phases, respectively. Generally, dielectric properties may be improved by annealing, e.g., the permittivity for as-deposited Gd2O3 film was 10.4 but annealing in oxygen at 700°C raised it to 15.4.

The ALD processes for the binary REOs form the basis for depositing multi-component RE-containing films. Besides ternary oxides with the perovskite structure, e.g., LaAlO3 and LaGaO3, phases with two REOs can be processed as solid solutions. An example thereof is YScO3 having permittivity above 15 and remaining amorphous up to 800°C to 1000°C, depending on the ALD process selected, thus offering a very attractive alternative to the existing high-κ gate dielectrics.

Keywords

71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Leskelä, M. Ritala: Rare-earth oxide thin films as gate oxides in MOSFET transistors, J. Solid State Chem. 171, 170 (2003) CrossRefGoogle Scholar
  2. M. Leskelä, M. Tammenmaa: Materials for electroluminescent thin films, Mater. Chem. Phys. 16, 349 (1987) CrossRefGoogle Scholar
  3. T. Suntola, J. Antson: US Patent 4 058 430 (1977) Google Scholar
  4. M. Ritala, M. Leskelä: Atomic layer deposition, in Handbook of Thin Film Materials (Academic Press, San Diego 2002) p. 103 Google Scholar
  5. M. de Ridder, P. C. van de Ven, R. G. van Welzenis, H. H. Brongersma, S. Helfensteyn, C. Creemers, P. van der Voort, M. Baltes, M. Mathieu, E. F. Vansant: Growth of iron oxide on yttria-stabilized zirconia by atomic layer deposition, J. Phys. Chem. B 106, 13146 (2002) CrossRefGoogle Scholar
  6. D. Hausmann, J. Becker, S. Wang, R. G. Gordon: Rapid vapor deposition of highly conformal silica nanolaminates, Science 298, 402 (2002) CrossRefGoogle Scholar
  7. T. Suntola: Atomic layer epitaxy, Mat. Sci. Rep. 4, 261 (1989) CrossRefGoogle Scholar
  8. M. Putkonen, J. Niinistö, K. Kukli, T. Sajavaara, M. Karppinen, H. Yamauchi, L. Niinistö: ZrO2 thin films grown onto silicon substrates by atomic layer deposition with Cp2Zr(CH3)2 and water as precursors, Chem. Vap. Dep. 9, 207 (2003) CrossRefGoogle Scholar
  9. L. Niinistö, J. Päiväsaari, J. Niinistö, M. Putkonen, M. Nieminen: Advanced electronic and optoelectronic materials by atomic layer deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials, Phys. Stat. Sol. A 201, 1443 (2004) CrossRefGoogle Scholar
  10. H. Mölsä, L. Niinistö, M. Utriainen: Growth of yttrium oxide thin films from β-diketonate precursor, Adv. Mater. Opt. Electron. 4, 389 (1994) CrossRefGoogle Scholar
  11. H. Mölsä, L. Niinistö: Deposition of cerium dioxide thin films on silicon substrates by atomic layer epitaxy, Mater. Res. Soc. Symp. Proc. 355, 341 (1994) Google Scholar
  12. J. Päiväsaari, M. Putkonen, L. Niinistö: A comparative study on the properties of lanthanide oxide thin films processed by atomic layer deposition, Thin Solid Films 472, 275 (2005) CrossRefGoogle Scholar
  13. M. Putkonen, M. Nieminen, J. Niinistö, L. Niinistö, T. Sajavaara: Surface-controlled deposition of Sc2O3 thin films by atomic layer epitaxy using β-diketonate and organometallic precursors, Chem. Mater. 13, 4701 (2001) CrossRefGoogle Scholar
  14. M. Putkonen, T. Sajavaara, L.-S. Johansson, L. Niinistö: Low-temperature ALE deposition of Y2O3 thin films from β-diketonate precursors, Chem. Vap. Dep. 7, 44 (2001) CrossRefGoogle Scholar
  15. E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, C. D'Emic: Ultrathin high-κmetal oxides on silicon: Processing and characterization and integration issues, Microelectron. Eng. 59, 341 (2001) CrossRefGoogle Scholar
  16. T. T. Van, J. P. Chang: Surface reaction kinetics of metal β-diketonate precursors with O radicals in radical-enhanced atomic layer deposition of metal oxides, Appl. Surf. Sci. 246, 250 (2005) CrossRefGoogle Scholar
  17. J. Niinistö, M. Putkonen, L. Niinistö: Processing of Y2O3 thin films by atomic layer deposition from cyclopentadienyl-type compounds and water as precursors, Chem. Mater. 16, 2953–2958 (2004) CrossRefGoogle Scholar
  18. M. Nieminen, M. Putkonen, L. Niinistö: Formation and stability of lanthanum oxide thin films deposited from β-diketonate precursor, Appl. Surf. Sci. 174, 155 (2001) CrossRefGoogle Scholar
  19. B. S. Lim, A. Rahtu, R. G. Gordon: Atomic layer deposition of transition metals, Nature Mater. 2, 729 (2003) Google Scholar
  20. R. G. Gordon, J. Becker, D. Hausmann, S. Shu: Vapor deposition of metal oxides and silicates: possible gate insulators for future microelectronics, Chem. Mater. 13, 2463 (2001) CrossRefGoogle Scholar
  21. D. H. Triyoso, R. I. Hegde, J. Grant, P. Fejes, R. Liu, D. Roan, M. Ramon, D. Wherho, R. Rai, L. B. La, J. Baker, C. Garza, T. Guenher, B. E. White, P. J. Tobin: Film properties of ALD HfO2 and La2O3 gate dielectrics grown on Si with various pre-deposition treatments, J. Vac. Sci. Technol. B 22, 2121 (2004) CrossRefGoogle Scholar
  22. D. H. Triyoso, R. I. Hegde, J. M. Grant, J. K. Schaeffer, D. Roan, B. E. White, P. J. Tobin: Evaluation of lanthanum based gate dielectrics deposited by atomic layer deposition, J. Vac. Sci. Technol. B 23, 288 (2005) CrossRefGoogle Scholar
  23. W. He, S. Schuetz, R. Solanki, J. Belot, J. McAndrew: Atomic layer deposition of lanthanum oxide films for high-k gate dielectrics, Electrochem. Solid-State Lett. 7, G131 (2004) CrossRefGoogle Scholar
  24. J. Päiväsaari, M. Putkonen, L. Niinistö: Deposition of cerium dioxide buffer layers by atomic layer epitaxy, J. Mater. Chem. 12, 1828 (2002) CrossRefGoogle Scholar
  25. A. Kosola, J. Päiväsaari, M. Putkonen, L. Niinistö: ALD growth of neodymium oxide and neodymium aluminate thin films, Thin Solid Films 479, 159 (2005) CrossRefGoogle Scholar
  26. R. J. Potter, P. R. Chalker, T. D. Manning, H. C. Aspinall, Y. F. Loo, A. C. Jones, L. M. Smith, G. W. Critchlow, M. Schumacher: Deposition of HfO2, Gd2O3 and PrOx by liquid injection ALD techniques, Chem. Vap. Dep. 11, 159 (2005) CrossRefGoogle Scholar
  27. K. Kukli, M. Ritala, T. Pilvi, T. Sajavaara, M. Leskelä, A. C. Jones, H. C. Aspinall, D. C. Gilmer, P. J. Tobin: Evaluation of a praseodymium precursor for atomic layer deposition of oxide dielectric films, Chem. Mater. 16, 5162 (2004) Google Scholar
  28. A. C. Jones, H. C. Aspinall, P. R. Chalker, R. J. Potter, K. Kukli, A. Rahtu, M. Ritala, M. Leskelä: Some recent developments in the MOCVD and ALD of high-k dielectric oxides, J. Mater. Chem. 14, 3101 (2004) CrossRefGoogle Scholar
  29. A. C. Jones, H. C. Aspinall, P. R. Chalker, R. J. Potter, K. Kukli, A. Rahtu, M. Ritala, M. Leskelä: Recent developments in the MOCVD and ALD of rare earth oxides and silicates, Mater. Sci. Eng. B 118, 97 (2005) CrossRefGoogle Scholar
  30. J. Niinistö, N. Petrova, M. Putkonen, L. Niinistö, K. Arstila, T. Sajavaara: Gadolinium oxide thin films by atomic layer deposition, J. Cryst. Growth 285, 191 (2005) CrossRefGoogle Scholar
  31. J. Päiväsaari, M. Putkonen, T. Sajavaara, L. Niinistö: Atomic layer deposition of rare earth oxides: Erbium oxide films from β-diketonate and ozone precursors, J. Alloys Compd. 374, 124 (2004) CrossRefGoogle Scholar
  32. J. Päiväsaari, J. Niinistö, K. Arstila, K. Kukli, M. Putkonen, L. Niinistö: High growth rate of erbium oxide thin films in atomic layer deposition from (CpMe)3Er and water precursors, Chem. Vap. Dep. 11, 915 (2005) CrossRefGoogle Scholar
  33. J. Päiväsaari, C. L. Dezelah, D. Back, H. M. El-Kadri, M. J. Heeg, M. Putkonen, L. Niinistö, C. H. Winter: Synthesis, structure, and properties of volatile lanthanide complexes containing amidinate ligands: Application for Er2O3 thin film growth by atomic layer deposition, J. Mater Chem. 15, 4224 (2005) CrossRefGoogle Scholar
  34. G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli, I. L. Fedushkin, H. Schumann, Y. Lebedinskii, A. Zenkevich: Atomic-layer deposition of Lu2O3, Appl. Phys. Lett. 85, 630 (2004) CrossRefGoogle Scholar
  35. M. Tiitta, L. Niinistö: Volatile metal β-diketonates: ALE and CVD precursors for electroluminescent device thin films, Chem. Vap. Dep. 3, 167 (1997) CrossRefGoogle Scholar
  36. K. J. Eisentraut, R. E. Sievers: Volatile rare earth chelates, J. Am. Chem. Soc. 87, 5254 (1965) CrossRefGoogle Scholar
  37. S.-C. Ha, E. Choi, S.-H. Kim, J. S. Roh: Influence of oxidant source on the property of atomic layer deposited Al2O3 on hydrogen-terminated Si substrate, Thin Solid Films 476, 252 (2005) CrossRefGoogle Scholar
  38. J. Niinistö, M. Putkonen, L. Niinistö, K. Kukli, M. Ritala, M. Leskelä: Structural and dielectric properties of thin ZrO2 films on silicon grown by atomic layer deposition from cyclopentadienyl precursor, J. Appl. Phys. 95, 84 (2004) CrossRefGoogle Scholar
  39. H. B. Park, M. Cho, J. Park, S. W. Lee, C. S. Hwang, J.-P. Kim, J.-H. Lee, N.-I. Lee, H.-K. Kang, J.-C. Lee, S.-J. Oh: Comparison of HfO2 films grown by atomic layer deposition using HfCl4 and H2O or O3 as the oxidant, J. Appl. Phys. 94, 3641 (2003) CrossRefGoogle Scholar
  40. T. Leskelä, K. Vasama, G. Härkönen, P. Sarkio, M. Lounasmaa: Potential cerium precursors for blue colour in thin film electroluminescent devices grown by atomic layer epitaxy, Adv. Mater. Opt. Electron. 6, 169 (1996) CrossRefGoogle Scholar
  41. M. Putkonen, L. Niinistö: Organometallic precursors for atomic layer deposition in CVD precursors, Topics Organomet. Chem. 9, 125 (2005) CrossRefGoogle Scholar
  42. B. S. Lim, A. Rahtu, J.-S. Park, R. G. Gordon: Synthesis and characterization of volatile thermally stable reactive transition metal amidinates, Inorg. Chem. 42, 7951 (2003) CrossRefGoogle Scholar
  43. B. S. Lim, A. Rahtu, P. deRouffignac, R. G. Gordon: Atomic layer deposition of lanthanum aluminum oxide nano-laminates for electrical applications, Appl. Phys. Lett. 84, 3957 (2004) CrossRefGoogle Scholar
  44. H. Seim, H. Mölsä, M. Nieminen, H. Fjellvåg, L. Niinistö: Deposition of LaNiO3 thin films in an atomic layer epitaxy reactor, J. Mater. Chem. 7, 449 (1997) CrossRefGoogle Scholar
  45. H. Seim, M. Nieminen, L. Niinistö, H. Fjellvåg, L.-S. Johansson: Growth of LaCoO3 thin films from β-diketonate precursors, Appl. Surf. Sci. 112, 243 (1997) CrossRefGoogle Scholar
  46. O. Nielsen, M. Peussa, H. Fjellvåg, L. Niinistö, A. Kjekshus: Thin film deposition of lanthanum manganite perovskite by ALE process, J. Mater. Chem. 9, 1781 (1999) CrossRefGoogle Scholar
  47. M. Nieminen, T. Sajavaara, E. Rauhala, M. Putkonen, L. Niinistö: Surface-controlled growth of LaAlO3 thin films by atomic layer epitaxy, J. Mater. Chem. 11, 2340 (2001) CrossRefGoogle Scholar
  48. M. Nieminen, S. Lehto, L. Niinistö: Atomic layer epitaxy growth of LaGaO3 thin films, J. Mater. Chem. 11, 3148 (2001) CrossRefGoogle Scholar
  49. O. Nilsen, H. Fjellvåg, A. Kjekshus: The AVS topical conference on atomic layer deposition (ALD 2004), in Growth of La 1-x Ca x MnO 3 by ALD (2004) Google Scholar
  50. P. Myllymäki, M. Nieminen, J. Niinistö, M. Putkonen, K. Kukli, L. Niinistö: High permittivity YScO3 thin films by atomic layer deposition using two precursor approaches, J. Mater. Chem. 16, 563 (2006) CrossRefGoogle Scholar
  51. M. Putkonen, T. Sajavaara, L. Niinistö, L.-S. Johansson, L. Niinistö: Deposition of yttria-stabilized zirconia thin films by atomic layer epitaxy from β-diketonate and organometallic precursors, J. Mater. Chem. 12, 1 (2002) CrossRefGoogle Scholar
  52. E. Gourba, A. Ringuedé, M. Cassir, J. Päiväsaari, J. Niinistö, M. Putkonen, L. Niinistö: Microstructural and electrical properties of gadolinium doped ceria thin films prepared by atomic layer deposition (ALD), Proc. Electrochem. Soc. 2003-7, 267 (2003) Google Scholar
  53. E. Gourba, A. Ringuedé, M. Cassir, A. Billard, J. Päiväsaari, J. Niinistö, M. Putkonen, L. Niinistö: Characterisation of thin films of ceria-based electrolytes for intermediate temperature-solid oxide fuel cells (IT-SOFC), Ionics 9, 15 (2003) CrossRefGoogle Scholar
  54. R. G. Gordon, J. Becker, D. Hausmann, S. Suh: Vapor deposition of metal oxides and silicates: Possible gate insulators for future microelectronics, Chem. Mater. 13, 2463 (2001) CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Laboratory of Inorganic and Analytical ChemistryHelsinki University of TechnologyEspooFinland
  2. 2.Department of ChemistryWayne State UniversityDetroit, MichiganUSA

Personalised recommendations