Sesquioxides as Host Materialsfor Rare-Earth-Doped Bulk Lasersand Active Waveguides

Part of the Topics in Applied Physics book series (TAP, volume 106)


This Chapter focuses on the optical applications of rare-earth oxides. Due to their thermo-mechanical properties, the sesquioxides of yttrium, lutetium, and scandium are promising host materials for rare-earth-doped solid-state lasers. An Yb-doped Sc2O3 crystal has been successfully operated in the thin disk laser setup. A maximum output power of 124.5 W with a slope efficiency of nearly 50 % in the cw mode has been achieved. Additionally, high-quality thin films of these sesquioxides grown by pulsed laser deposition as well as by electron beam evaporation, either on sapphire or on quartz substrates, have been investigated for their use in integrated optics. These films were highly textured along the <111> direction. In the case of lattice matched systems, e.g., Lu0.92Sc1.08O3 on α-Al2O3, epitaxial film growth was achieved. Waveguiding of light at different wavelengths was demonstrated in yttria films with a thickness of 1 μm on both types of substrates.


71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Fornasiero, E. Mix, V. Peters, K. Petermann, G. Huber: New oxide crystals for solid state lasers, Cryst. Res. Technol. 34, 255–260 (1999) CrossRefGoogle Scholar
  2. L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, G. Boulon: Optimization of spectroscopic properties of 3+-doped refractory sesquioxides: Cubic 2O3, 2O3 and monoclinic 2O3, Opt. Mater. 16, 475–483 (2001) CrossRefGoogle Scholar
  3. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert: Highly efficient mode-locked :2O3 laser, Opt. Lett. 29, 391–393 (2004) CrossRefGoogle Scholar
  4. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower: Scalable concept for diode-pumped high-power solid-state lasers, Appl. Phys. B 58, 365 (1994) Google Scholar
  5. V. Peters, K. Petermann, G. Huber, M. Larionov, J. Speiser, A. Giesen: Growth of sesquioxides for high power thin-disk-laser applications, in Advanced Solid-State Lasers Conference, vol. 68, Technical Digest, OSA TOPS (Quebec City, Canada 2002) pp. 150–152 Google Scholar
  6. C. Grivas, T. C. May-Smith, D. P. Shepherd, R. W. Eason: On the growth and lasing characteristics of thick :waveguiding films fabricated by pulsed laser deposition, Appl. Phys. A 79, 1203–1206 (2004) Google Scholar
  7. J. K. Jones, J. P. de Sandro, M. Hempstead, D. P. Shepherd, A. C. Large, A. C. Tropper, J. S. Wilkinson: Channel waveguide laser at 1 micron in -indiffused 3, Opt. Lett. 20, 1477–1479 (1995) Google Scholar
  8. E. Flores-Romero, G. V. Vazquez, H. Marquez, R. Rangel-Rojo, J. Rickards, R. Trejo-Luna: Planar waveguide lasers by proton implantation in :crystals, Optics Express 12, 2264 (2004) CrossRefGoogle Scholar
  9. D. C. Hanna, A. C. Large, D. P. Shephard, A. C. Trooper, I. Charier, B. Ferrand, D. Pelenc: Low threshold quasi-three-level 946laser operation of an epitaxially grown :3Al5O12 waveguide, Appl. Phys. Lett. 63, 7–9 (1993) CrossRefGoogle Scholar
  10. C. L. Bonner: Multi-Watt, Diode-Pumped Planar Waveguide Lasers, Ph.D. thesis, Faculty of Science, Department of Physics, University Southampton, Southampton (2000) Google Scholar
  11. A. A. Anderson: Crystalline Planar Waveguide Lasers Fabricated by Pulsed Laser Deposition, Ph.D. thesis, Faculty of Science, Department of Physics, University of Southampton, Southampton (1998) Google Scholar
  12. S. J. Barrington: Planar Waveguide Devices Fabricated by Pulsed Laser Deposition, Ph.D. thesis, Faculty of Science, Department of Physics, University of Southampton, Southampton (2001) Google Scholar
  13. T. H. Hoekstra, L. T. H. Hilderink, P. V. Lambeck, T. J. A. Popma: Photoluminescence and attenuation of spray-pyrolysis-deposited erbium-doped 2O3 planar optical waveguides, Opt. Lett. 17, 1506–1508 (1992) CrossRefGoogle Scholar
  14. M. B. Korzenski, P. Lecoeur, B. Mercey, P. Camy, J. L. Doualan: Low propagation losses of an :2O3 planar waveguide grown by alternate-target pulsed laser deposition, Appl. Phys. Lett. 78, 1210–1212 (2001) CrossRefGoogle Scholar
  15. P. Lecoeur, M. B. Korzenski, A. Ambrosini, B. Mercey, P. Camy, J. L. Doualan: Growth of :2O3 thin films by pulsed laser ablation from metallic targets, Appl. Surf. Sci. 186, 403–407 (2002) CrossRefGoogle Scholar
  16. S. L. Jones, D. Kumar, R. K. Singh, P. H. Holloway: Luminescence of pulsed laser deposited yttrium oxide films, Appl. Phys. Lett. 71, 404–406 (1997) CrossRefGoogle Scholar
  17. A. C. Rastogi, R. N. Sharma: Structural and electrical characteristics of metal-insulator-semiconductor diodes based on 2O3 dielectric thin films on silicon, J. Appl. Phys. 17, 5041–5052 (1992) CrossRefGoogle Scholar
  18. S. Zhang, R. Xiao: Yttrium oxide films prepared by pulsed laser deposition, J. Appl. Phys. 83, 3842–3848 (1998) CrossRefGoogle Scholar
  19. K. Petermann, L. Fornasiero, E. Mix, V. Peters: High melting sesquioxides: Crystal growth, spectroscopy, and laser experiments, Opt. Mat. 19, 67–71 (2002) CrossRefGoogle Scholar
  20. J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii: 3+:2O3 ceramic laser, Appl. Phys. Lett. 83, 1101–1103 (2003) CrossRefGoogle Scholar
  21. L. Vegard: Die Konstitution der Mischkristalle und die Raumfüllung der Atome, Zeitschrift für Physik 5, 17 (1921) CrossRefGoogle Scholar
  22. S. Bär, G. Huber, J. Gonzalo, A. Perea, M. Munz: Pulsed laser deposition of :2O3 thin films on (0001) α-2O3, Appl. Phys. A 80, 209 (2005) CrossRefGoogle Scholar
  23. K. G. Cho, D. Kumar, P. H. Holloway, R. K. Singh: Luminescence behavior of pulsed laser deposited :2O3 thin film phosphors on sapphire substrates, Appl. Phys. Lett. 73, 3058 (1998) CrossRefGoogle Scholar
  24. S. Zhang, R. Xiao: Yttrium oxide films prepared by pulsed laser deposition, J. Appl. Phys. 83, 3842 (1998) CrossRefGoogle Scholar
  25. D. Dijkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min-Lee, W. L. McLean, M. Croft: Preparation of -Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material, Appl. Phys. Lett. 51, 619 (1987) CrossRefGoogle Scholar
  26. S. J. Barrington, T. Bhutta, D. P. Shepherd, R. W. Eason: The effect of particulate density on performance of :3Ga5O12 waveguide lasers grown by pulsed laser deposition, Opt. Commun. 185, 145 (2000) CrossRefGoogle Scholar
  27. S. G. Hansen, T. E. Robitaille: Formation of polymer films by pulsed laser evaporation, Appl. Phys. Lett. 52, 81 (1988) CrossRefGoogle Scholar
  28. S. Nishio, T. Chiba, A. Matsuzaki, H. Sato: Control of structures of deposited polymer films by ablation laser wavelength: Polyacrylonitrile at 308, 248, and 193, J. Appl. Phys. 79, 7198 (1996) CrossRefGoogle Scholar
  29. F. Flory, L. Escoubas: Optical properties of nanostructured thin films, Prog. in Quant. Electr. 28, 89–112 (2004) CrossRefGoogle Scholar
  30. L. Rabisch, S. Bär, H. Scheife: doped (/)23 thin films grown by thermal evaporation, Opt. Lett. accepted for publication Google Scholar
  31. K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, R. K. Singh: Improved luminescence properties of pulsed laser deposited :2O3 thin films on diamond coated silicon substrates, Appl. Phys. Lett. 71, 3335–3337 (1997) CrossRefGoogle Scholar
  32. M. B. Korzenski, P. Lecoeur, B. Mercey, D. Chippaux, B. Raveau, R. Desfeux: PLD-grown 2O3 thin films from metal: An advantageous alternative to films deposited from yttria, Chem. Mat. 12, 3139 (2000) CrossRefGoogle Scholar
  33. H. Schulte-Schrepping, J. Heuer, B. Hukelmann: Adaptive indirectly cooled monochromator crystals at HASYLAB, J. Sync. Rad. 5, 682 (1998) CrossRefGoogle Scholar
  34. M. H. Cho, D. H. Ko, K. Jeong, I. W. Lyo, S. W. Whangbo, H. B. Kim, S. Choi, J. H. Song, S. Cho, C. N. Whang: Temperature dependence of the properties of heteroepitaxial 2O3 films grown on by ion assisted evaporation, J. Appl. Phys. 86, 198–204 (1999) CrossRefGoogle Scholar
  35. T. Möller, P. Gürtler, E. Roick, G. Zimmerer: The experimental station superlumi: A unique setup for time- and spectrally resolved luminescence under state selective excitation with synchrotron radiation, Nucl. Instrum. Met. A 246, 461 (1986) CrossRefGoogle Scholar
  36. B. M. Tissue: Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts, Chem. Mater. 10, 2837–2845 (1998) CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Institute of Laser PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations