Rare Earth Oxides in Microelectronics

Part of the Topics in Applied Physics book series (TAP, volume 106)


A feasibility study of rare earth oxides for replacing SiO2 gate oxide for CMOS integrated circuits has been conducted. Rare earth oxides have relatively higher dielectric constants and are suitable as gate dielectrics. Two-dimensional device simulations reveal that the desirable dielectric constant, without affecting the short-channel performance, is less than 50. The dielectric constant values of rare earth oxides satisfy this condition. One of the issues in rare earth oxides that needs to be addressed is the hygroscopic properties of the film. These physical and electrical changes in the oxides caused by this moisture absorption, which are not suitable in electronics applications, can be suppressed by coating a metal film or by using a passivation layer.

Of all the rare earth oxides, it is found that La2O3, after a proper heat treatment, has the best electrical properties for gate insulator applications in MOSFETs, because of its higher barrier height for the conduction band electrons and valence band holes as well as its higher dielectric constant. The smallest gate leakage current demonstrated through experimental results was 3 × 10–4/cm3 at 1 V for an EOT of 0.6 nm. The conduction mechanism through La2O3 has been modeled, and has been shown to be mainly by SCLC.

With post-metallization annealing (PMA) after Al gate electrode formation, La2O3 gated MISFET has shown high effective electron mobility of 319 cm2/Vs. This value is lower compared to SiO2, but still one of the highest among all the high-κ MISFETs, for a gate oxide EOT value which is slightly larger than 2.3 nm. The PMA recovers the flat band shift and improves the mobility presumably by the diffusion of Al into La2O3 which compensates the positive charges in the film. However, the growth of an interfacial Al2O3 layer, which results in an increase in EOT, is still a problem. The solution could be to replace the Al gate electrode with a less reactive metal with La2O3, and doping La2O3 films with some elements which compensate the negative charge.

Interfacial layer suppression between the silicon substrate and the La2O3 film has been accomplished by using Y2O3 as a buffer layer, which is necessary to achieve an EOT less than 1 nm.

Reliability and yield of rare earth oxides still need to be investigated, but the results shown here hold promise for rare earth oxides, especially La2O3, as a suitable candidate for the post-Hf-based gate insulator in advanced CMOS integrated circuits.


71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C. Mead, L. Conway: Introduction to VLSI Systems (Addison-Wesley 1979) Google Scholar
  2. H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, H. Iwai: Tunneling gate oxide approach to ultra-high current drive in small-geometry MOSFETs, IEDM Tech. Dig. 593 (1994) Google Scholar
  3. H. Wakabayashi, S. Yamagami, N. Ikezawa, A. Ogura, M. Narihiro, K. Arai, Y. Ochiai, K. Takeuchi, T. Yamamoto, T. Mogami: Sub-10-nm planar-bulk-CMOS devices usgin lateral junction control, IEDM Tech. Dig. 989 (2003) Google Scholar
  4. R. Chau, J. Kavalieros, B. Roberds, B. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy, G. Dewey: 30 nm physical gate length CMOS transistors with 1.0 ps n-MOS and 1.7 ps p-MOS gate delays, IEDM Tech. Dig. 45 (2000) Google Scholar
  5. J. Robertson: Band offsets of high dielectric constant gate oxides on silicon, J. Non-Cryst. Solids 303, 94 (2002) CrossRefGoogle Scholar
  6. T. Aoyama, T. Maeda, K. Torii, K. Yamashita, Y. Kobayashi, S. Kamiyama, T. Miura, H. Kitajima, T. Arikado: Proposal of new HfSiON CMOS fabrication process (HAMDAMA) for low standby power device, IEDM Tech. Dig. 95 (2004) Google Scholar
  7. C. Choi, C. Y. Kang, S. J. Rhee, M. S. Abkar, S. A. Krishn, M. Zhang, H. Kim, T. Lee, F. Zhu, I. Ok, S. Koveshnikov, J. C. Lee: Fabrication of TaN-gated ultra-thin MOSFETs (EOT = 1.0nm) with HfO2 using a novel oxygen scavenging process for sub 65 nm application, Symp. of VLSI Technology 226 (2005) Google Scholar
  8. T. Hattori, T. Yoshida, T. Shiraishi, K. Takahashi, H. Nohira, S. Joumori, K. Nakajima, M. Suzuki, K. Kimura, I. Kashiwagi, C. Ohshima, S. Ohmi, H. Iwai: Composition, chemical structure, and electronic band stucture of rare earth oxide/Si(100) interfacial transition layer, Microelectron. Eng. 72, 283 (2004) CrossRefGoogle Scholar
  9. H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, Y. Yoshihara: Advanced gate dielectric materials for sub-100 nm CMOS, IEDM Tech. Dig. 625 (2002) Google Scholar
  10. N. R. Mohapatra, M. P. Desai, S. G. Narendra, V. R. Rao: The effect of high-k gate dielectrics on deep submicrometer CMOS device and circuit performance, IEEE Trans. Elec. Dev. 49, 826 (2002) CrossRefGoogle Scholar
  11. Y. Kim, S. I. Ohmi, K. Tsutsui, H. Iwai: Analysis of variation in leakage currents of lanthana thin films, Solid-State Electron. 49, 825 (2005) CrossRefGoogle Scholar
  12. N. Yang, K. Henson, J. Hauser, J. Wortman: Modeling of study of ultrahin gate oxides using direct tunneling current and capacitance-voltage measurments in MOS devices, IEEE Trans. Elec. Dev. 46, 1464 (1999) CrossRefGoogle Scholar
  13. D. A. Buchanan, E. P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. A. Gribelyuk, A. Mocuta, A. Jamison, J. Brown, R. Arndt: 80 nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dieletric for ULSI applications, IEDM Tech. Dig. 223 (2000) Google Scholar
  14. A. Sussman: Space-charge-limited currents in copper phthalocyanine thin films, J. Appl. Phys. 38, 2738 (1967) CrossRefGoogle Scholar
  15. Y. Yeo, T. King, C. Hu: Direct tunneling leakage current and scalability of alternative gate dielectrics, Appl. Phys. Lett. 81, 2091 (2002) CrossRefGoogle Scholar
  16. J. A. Ng, Y. Kuroki, N. Sugii, K. Kakushima, S. I. Ohmi, K. Tsutsui, T. Hattori, H. Iwai, H. Wong: Effects of low temperature annealing on the ultrathin La2O3 gate dielectric; comparison of post deposition annealing and post metallization annealing, Microelectron. Eng. 80, 206 (2005) CrossRefGoogle Scholar
  17. H. Wong, K. L. Ng, N. Zhan, M. C. Poon, C. W. Kok: Interface bonding structure of hafnium oxide prepared by direct sputtering of hafnium in oxygen, J. Vac. Sci. Technol. B 22, 1094 (2004) CrossRefGoogle Scholar
  18. K. Torii, Y. Shimamoto, S. Saito, K. Obata, T. Yamauchi, D. Hisamoto, T. Onai, M. Hiratani: Effect of interfacial oxide on electron mobility in MISFETs with Al2O3 gate dielectrics, Microelectron. Eng. 65, 447 (2003) CrossRefGoogle Scholar
  19. E. Simoen, C. Claeys: On the flicker noise in submicron silicon MOSFETs, Solid-State Electron. 43, 865 (1999) CrossRefGoogle Scholar
  20. International Technology Roadmap for Semiconductors Google Scholar

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyInterdisciplinary Graduate School of Sciences and EngineeringYokohamaJapan
  2. 2.Frontier Collaborative Research CenterTokyo Institute of TechnologyYokohamaJapan
  3. 3.Indian Institute of TechnologyBombayIndia

Personalised recommendations