Electronic Structure of Rare Earth Oxides

Part of the Topics in Applied Physics book series (TAP, volume 106)


The electronic structures of dioxides, REO2, and sesquioxides, RE2O3, of the rare earths, RE=Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy and Ho, are calculated with the self-interaction-corrected local-spin-density approximation. The valencies of the rare earth ions are determined from total-energy minimization. Ce, Pr, and Tb are found to have tetravalent configurations in their dioxides, while for all the sesquioxides the trivalent ground-state configuration is most favourable. Tetravalent NdO2 is predicted to exist as a metastable phase – unstable towards the formation of hexagonal Nd2O3. The trends of the band gap structure are discussed.


71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Strange, A. Svane, W. M. Temmerman, Z. Szotek, H. Winter: Understanding the valency of rare earths from first-principles theory, Nature (London) 399, 756 (1999) CrossRefGoogle Scholar
  2. L. Petit, A. Svane, Z. Szotek, W. M. Temmerman: First-principles study of rare earth oxides, Phys. Rev. B 72, 205118 (2005) CrossRefGoogle Scholar
  3. E. Holland-Moritz: Coexistence of valence fluctuating and stable Pr ions in Pr6O11, Z. Phys. B 89, 285 (1992) CrossRefGoogle Scholar
  4. L. Eyring: The binary rare earth oxides, in K. A. Gschneider Jr., L. Eyring (Eds.): Handbook on the Physics and Chemistry of Rare Earths, vol. 3 (North-Holland, Amsterdam 1979) p. 337 Google Scholar
  5. S. Tanaka, H. Ogasawara, K. Okada, A. Kotani: Theory of the 4d→2p X-ray emission spectroscopy in Ce2O3, Pr2O3 and Dy2O3, J. Phys. Soc. Jpn. 64, 2225 (1995) CrossRefGoogle Scholar
  6. A. Moewes, D. L. Ederer, M. M. Grush, T. A. Callcott: Probing electron correlation, charge transfer, and Coster-Kronig transitions at the 3d and 4d thresholds of Nd by resonant inelastic scattering, Phys. Rev. B 59, 5452 (1999) CrossRefGoogle Scholar
  7. D. D. Koelling, A. M. Boring, J. H. Wood: The electronic structure of CeO2 and PrO2, Solid State Commun. 47, 227 (1983) CrossRefGoogle Scholar
  8. N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikosov, B. Johansson, B. I. Lundqvist: Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles, Phys. Rev. B 64, 115108 (2001) CrossRefGoogle Scholar
  9. S. Fabris, S. de Gironcoli, S. Baroni: Taming multiple valency with density functionals: A case study of defective ceria, Phys. Rev. B 71, 041102 (2005) CrossRefGoogle Scholar
  10. J. Dabrowski, V. Zavodinski, A. Fleszar: Pseudopotential study of PrO2 and HfO2 in fluorite phase, Microelectron. Reliab. 41, 1093 (2001) CrossRefGoogle Scholar
  11. N. Hirosaki, S. Ogata, C. Kocer: Ab-initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides, J. Alloys Comp. 351, 31 (2003) CrossRefGoogle Scholar
  12. W. M. Temmerman, A. Svane, Z. Szotek, H. Winter: Applications of self-interaction corrections to localized states in solids, in J. F. Dobson, G. Vignale, M. P. Das (Eds.): Electronic Density Functional Theory: Recent Progress and New Directions (Plenum, New York 1998) Google Scholar
  13. W. M. Temmerman, A. Svane, Z. Szotek, H. Winter, S. Beiden: On the implementation of the self-interaction corrected local spin density approximation for d- and f-electron systems, in H. Dreyss'e (Ed.): Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method, Lecture Notes in Physics 535 (Springer, Berlin, Heidelberg 2000) Google Scholar
  14. A. Svane, G. Santi, Z. Szotek, W. M. Temmerman, P. Strange, M. Horne, G. Vaitheeswaran, V. Kanchana, L. Petit, H. Winter: Electronic structure of Sm and Eu chalcogenides, Phys. Stat. Sol. B 241, 3185 (2004) CrossRefGoogle Scholar
  15. G. Vaitheeswaran, L. Petit, A. Svane, V. Kanchana, M. Rajagopalan: Electronic structure of praseodymium monopnictide and monochalcogenides under pressure, J. Phys. Condens. Matter 16, 4429 (2004) CrossRefGoogle Scholar
  16. J. P. Perdew, A. Zunger: Self-interaction correction to density-functional approximations from any-electron systems, Phys. Rev. B 23, 5048 (1981) CrossRefGoogle Scholar
  17. W. Kohn, L. J. Sham: Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965) CrossRefGoogle Scholar
  18. L. J. Sham, W. Kohn: One-particle properties of an inhomogeneous interacting electron gas, Phys. Rev. 145, 561 (1966) CrossRefGoogle Scholar
  19. S. H. Vosko, L. Wilk, M. Nusair: Accurate spin-dependent electron liquid correlation energies for local spin-density calculations – a critical analysis, Can. J. Phys. 58, 1200 (1980) CrossRefGoogle Scholar
  20. O. K. Andersen, O. Jepsen, D. Glötzel: Canonical description of the band structures of metals, in F. Bassani, F. Fumi, M. P. Tosi (Eds.): Canonical Description of the Band Structures of Metals (North-Holland, Amsterdam 1985) Google Scholar
  21. P. Villars, L. D. Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2 ed. (ASM International, Ohio 1991) Google Scholar
  22. C. H. Gardiner, A. T. Boothroyd, P. Pattison, M. J. McKelvy, G. J. McIntyre, S. J. S. Lister: Cooperative Jahn–Teller distortion in PrO2, Phys. Rev. B 70, 024415 (2004) CrossRefGoogle Scholar
  23. H. R. Hoekstra, K. A. Gingerich: High-pressure B-type polymorphs of some rare-earth sesquioxides, Science 146, 1163 (1964) CrossRefGoogle Scholar
  24. R. W. G. Wyckoff: Crystal Structures, vol. 2 (Wiley, New York 1967) Google Scholar
  25. H. B. Lal, K. Gaur: Electrical conduction in non-metallic rare-earth solids, J. Mater. Sci. 23, 919 (1988) CrossRefGoogle Scholar
  26. A. V. Prokofiev, A. I. Shelykh, B. T. Melekh: Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series, J. Alloys Comp. 242, 41 (1996) CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Computer Science and Mathematics Division and Center for Computational SciencesOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of Physics and AstronomyUniversity of ÅårhusÅårhusDenmark
  3. 3.Daresbury LaboratoryDaresburyWarringtonUnited Kingdom

Personalised recommendations