Electronic Structure and Band Offsetsof Lanthanide Oxides

Part of the Topics in Applied Physics book series (TAP, volume 106)


This paper reviews the bulk electronic structures of high dielectric constant oxides, particularly lanthanide oxides. The electronic structures are calculated with methods beyond local density formalism, in order to give correct band gaps and correct energies for f states. The band offsets for the oxide–Si interfaces are an important factor determining the leakage currents, and these are derived from calculations and compared to experimental values. The band offset values for lanthanide oxides are advantageous compared to those of other high-k oxides.


71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. D. Wilk, R. M. Wallace, J. M. Anthony: High-κgate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89, 5243 (2001) CrossRefGoogle Scholar
  2. J. Robertson: Energy levels of point defects in 3 and related oxides, J. Appl. Phys. 93, 1054 (2003) CrossRefGoogle Scholar
  3. K. J. Hubbard, D. G. Schlom: Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11, 2757 (1996) Google Scholar
  4. J. Robertson: Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B 18, 1785 (2000) CrossRefGoogle Scholar
  5. Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, C. M. Kwei: Electrical characteristics of high quality 2O3 gate dielectric with equivalent oxide thickness of 5 A, IEEE E. D. Lett. 21, 341 (2000) CrossRefGoogle Scholar
  6. H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, Y. Yoshihara: Advanced gate dielectric materials for sub-100CMOS, Tech. Digest IEDM IEEE p. 625 (2002) Google Scholar
  7. L. F. Edge, D. G. Schlom, S. A. Chambers, E. Cicerrella, J. L. Freeouf, B. Hollander, J. Schubert: Measurement of the band offsets between amorphous 3 and silicon, Appl. Phys. Lett. 84, 726 (2004) CrossRefGoogle Scholar
  8. J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, J. M. Rosamilia: High epsiv gate dielectrics 2O3 and 2O3 for silicon, Appl. Phys. Lett. 77, 130 (2000) CrossRefGoogle Scholar
  9. J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, J. M. Rosamilia: Properties of high κgate dielectrics 2O3 and 2O3, J. Appl. Phys. 89, 3920 (2001) CrossRefGoogle Scholar
  10. A. Fissel, J. Dabrowski, H. J. Osten: Photoemission and ab initio theoretical study of interface and film formation during epitaxial growth and annealing of praseodymium oxide on (001), J. Appl. Phys. 91, 8986 (2002) CrossRefGoogle Scholar
  11. H. J. Osten, J. P. Liu, H. J. Mussig: Band gap and band discontinuities at crystalline 2O3/(001) heterojunctions, Appl. Phys. Lett. 80, 297 (2002) CrossRefGoogle Scholar
  12. S. Ohmi, M. Takeda, H. Ishiwara, H. Iwai: Electrical characteristics for 2O3 thin films fabricated by E-beam deposition method, J. Electrochem. Soc. 151, G279 (2004) CrossRefGoogle Scholar
  13. J. X. Wu, Z. M. Wang, S. Li, M. S. Ma: In situ photoemission study of a 2O3 thin film on (111), J. Vac. Sci. Technol. A 22, 594 (2004) CrossRefGoogle Scholar
  14. D. H. Triyoso, R. I. Hedge, J. Grant, P. Fejes, R. Liu, D. Roan, M. Ramon, D. Werho, R. Rai, L. B. La, J. Baker, C. Garza, T. Guenther, B. E. White,Jr., P. J. Tobin: Film properties of ALD 2 and 2O3 gate dielectrics grown on with various pre-deposition treatments, J. Vac. Sci. Technol. B 22, 2121 (2004) CrossRefGoogle Scholar
  15. G. Seguini, E. Bonera, S. Spiga, G. Scarel, M. Fanciulli: Energy-band diagram of metal/2O3/silicon structures, Appl. Phys. Lett. 85, 5316 (2004) CrossRefGoogle Scholar
  16. E. Bonera, G. Scarel, M. Fanciulli, P. Delugas, V. Fiorentini: Dielectric properties of high-κoxides: Theory and experiment for 2O3, Phys. Rev. Lett. 94, 027602 (2005) CrossRefGoogle Scholar
  17. P. W. Peacock, J. Robertson: Band offsets and Schottky barrier heights of high dielectric constant oxides, J. Appl. Phys. 92, 4712 (2002) CrossRefGoogle Scholar
  18. P. P. Rushton, D. J. Tozer, S. J. Clark: Nonlocal density-functional description of exchange and correlation in silicon, Phys. Rev. B 65, 235203 (2002) CrossRefGoogle Scholar
  19. M. Perego, G. Scarel: private communication Google Scholar
  20. B. M. Bylander, L. Kleinman: Good semiconductor band gaps with a modified local-density approximation, Phys. Rev. B 41, 7868 (1990) CrossRefGoogle Scholar
  21. B. Kralik, E. K. Chang, S. G. Louie: Structural properties and quasiparticle band structure of zirconia, Phys. Rev. B 57, 7027 (1998) CrossRefGoogle Scholar
  22. J. Dabrowski, V. Zavodinsky, A. Fleszar: Pseudopotential study of 2 and 2 in fluorite phase, Microelectron. Reliab. 41, 1093 (2001) CrossRefGoogle Scholar
  23. J. Robertson, C. W. Chen: Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate, Appl. Phys. Lett. 74, 1168 (1999) CrossRefGoogle Scholar
  24. A. M. Cowley, S. M. Sze: Surface states and barrier height of metal-semiconductor systems, J. Appl. Phys. 36, 3212 (1965) CrossRefGoogle Scholar
  25. W. Mönch: Metal-semiconductor contacts: Electronic properties, Surf. Sci. 299–300, 928 (1994) CrossRefGoogle Scholar
  26. W. Mönch: Role of virtual gap states and defects in metal-semiconductor contacts, Phys. Rev. Lett. 58, 1260 (1987) CrossRefGoogle Scholar
  27. M. Schluter: Chemical trends in metal-semiconductor barrier heights, Phys. Rev. B 17, 5044 (1978) CrossRefGoogle Scholar
  28. M. Schluter: Theoretical models of Schottky barriers, Thin Solid Films 93, 3 (1982) CrossRefGoogle Scholar
  29. J. Tersoff: Theory of semiconductor heterojunctions: The role of quantum dipoles, Phys. Rev. B 30, 4874 (1984) CrossRefGoogle Scholar
  30. J. Tersoff: Schottky barriers and semiconductor band structures, Phys. Rev. B 32, 6968 (1985) CrossRefGoogle Scholar
  31. M. Cardona, N. E. Christensen: Acoustic deformation potentials and heterostructure band offsets in semiconductors, Phys. Rev. B 35, 6182 (1987) CrossRefGoogle Scholar
  32. E. D. Palik: Handbook of Optical Properties of Solids, vol. 1–3 (Academic Press, San Diego 1985) Google Scholar
  33. S. Miyazaki: Photoemission study of energy-band alignments and gap-state density distributions for high-κgate dielectrics, J. Vac. Sci. Technol. B 19, 2212 (2001) CrossRefGoogle Scholar
  34. S. Sayan, E. Garfunkel, S. Suzer: Soft X-ray photoemission studies of the 2/2/system, Appl. Phys. Lett. 80, 2135 (2002) CrossRefGoogle Scholar
  35. G. B. Rayner Jr., D. Kang, Y. Zhang, G. Lucovsky: Nonlinear composition dependence of X-ray photoelectron spectroscopy and Auger electron spectroscopy features in plasma-deposited zirconium silicate alloy thin films, J. Vac. Sci. Technol. B 20, 1748 (2002) CrossRefGoogle Scholar
  36. W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim, Y. Di: Current transport in metal/hafnium oxide/silicon structure, IEEE E. D. Lett. 23, 97 (2002) CrossRefGoogle Scholar
  37. S. J. Wang, A. C. H. Huan, Y. L. Foo, J. W. Chai, J. S. Pan, Q. Li, Y. F. Dong, Y. P. Feng, C. K. Ong: Energy-band alignments at 2/, , and interfaces, Appl. Phys. Lett. 85, 4418 (2004) CrossRefGoogle Scholar
  38. O. Renault, N. T. Barrett, D. Samour, S. Quiais-Marthon: Electronics of the 2/2 interface by soft X-ray photoemission spectroscopy, Surf. Sci. 566, 526 (2004) CrossRefGoogle Scholar
  39. M. Oshima, S. Toyoda, T. Okumura, J. Okabayashi, H. Kumigashira, K. Ono, M. Niwa, K. Usuda, N. Hirashita: Chemistry and band offsets of 2 thin films for gate insulators, Appl. Phys. Lett. 83, 2172 (2003) CrossRefGoogle Scholar
  40. Y.-C. Yeo, T.-J. King, C. Hu: Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology, J. Appl. Phys. 92, 7266 (2002) CrossRefGoogle Scholar
  41. V. V. Afanas'ev, M. Houssa, A. Stesmans, M. M. Heyns: Electron energy barriers between (100)and ultrathin stacks of 2, 2O3, and 2 insulators, Appl. Phys. Lett. 78, 3073 (2001) CrossRefGoogle Scholar
  42. V. V. Afanas'ev, M. Houssa, A. Stesmans, M. M. Heyns: Band alignments in metal-oxide-silicon structures with atomic-layer deposited 2O3 and 2, J. Appl. Phys. 91, 3079 (2002) CrossRefGoogle Scholar
  43. T. Hattori, T. Yoshida, T. Shiraishi, K. Takahashi, H. Nohira, S. Joumori, K. Nakajima, M. Suzuki, K. Kimura, I. Kashiwagi, C. Ohshima, S. Ohmi, H. Iwai: Composition, chemical structure, and electronic band structure of rare earth oxide/(100) interfacial transition layer, Microelectron. Eng. 72, 283 (2004) CrossRefGoogle Scholar
  44. A. Ohta, M. Yamaoka, S. Miyazaki: Photoelectron spectroscopy of ultrathin yttrium oxide films on (100), Microelectron. Eng. 72, 154 (2004) CrossRefGoogle Scholar
  45. S. A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani, K. Eisenbeiser: Band discontinuities at epitaxial 3/(001), Appl. Phys. Lett. 77, 1662 (2000) CrossRefGoogle Scholar
  46. R. Ludeke, M. T. Cuberes, E. Cartier: Local transport and trapping issues in 2O3 gate oxide structures, Appl. Phys. Lett. 76, 2886 (2000) CrossRefGoogle Scholar
  47. D. J. DiMaria: Effects on interface barrier energies of metal-aluminum oxide-semiconductor (MAS) structures as a function of metal electrode material, charge trapping, and annealing, J. Appl. Phys. 45, 5454 (1974) CrossRefGoogle Scholar
  48. A. Baldereschi, S. Baroni, R. Resta: Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for /, Phys. Rev. Lett. 61, 734 (1988) CrossRefGoogle Scholar
  49. C. G. van de Walle: Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B 39, 1871 (1989) CrossRefGoogle Scholar
  50. C. J. Forst, C. R. Ashman, K. Schwarz, P. E. Blöchl: The interface between silicon and a high-κoxide, Nature 427, 53 (2004) CrossRefGoogle Scholar
  51. P. W. Peacock, J. Robertson: Structure, bonding, and band offsets of (100)3-silicon interfaces, Appl. Phys. Lett. 83, 5497 (2003) CrossRefGoogle Scholar
  52. P. W. Peacock, J. Robertson: Bonding, energies, and band offsets of -ZrO2 and 2 gate oxide interfaces, Phys. Rev. Lett. 92, 057601 (2004) CrossRefGoogle Scholar
  53. J. Robertson: Interfaces and defects of high-κoxides on silicon, Solid State Electron. 49, 283 (2005) CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Engineering DepartmentCambridge UniversityCambridgeUnited Kingdom

Personalised recommendations