Advertisement

Experimental Determination of the Band Offset of Rare Earth Oxides on Various Semiconductors

Chapter
Part of the Topics in Applied Physics book series (TAP, volume 106)

Abstract

The critical role of gate oxide in ultra-scaled devices is being investigated in terms of the properties of rare earth oxides as high dielectric constant (high-κ) materials to replace SiO2. In particular, the combination of rare earth oxides with high-mobility substrates, like Ge and GaAs, could offer the possibility to improve the interface properties. Among the different properties under investigation, the band alignment at the interface is a key issue because it affects the tunneling behavior of a device. Internal photoemission and X-ray photoelectron spectroscopy are useful techniques to experimentally determine the band offset at the semiconductor/oxide interface. After a detailed description of these two methods, we present a review of the data available in the literature on the interface of different high-κ oxides on silicon. Finally, we report our measurements of the Lu2O3 band alignment on various semiconductor substrates. A conduction band offset value of 2.1 eV has been obtained by internal photoemission for Lu2O3 films grown on Si, Ge, and GaAs. X-ray photoelectron spectroscopy measurements of the valence band offset were performed on Ge/Lu2O3 heterojunction. The results are in excellent agreement with those obtained using internal photoemission.

Keywords

71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. D. Wilk, R. M. Wallace, J. M. Anthony: High-κ gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89, 5243–5275 (2001) CrossRefGoogle Scholar
  2. C. L. Hinkle, G. Lucovsky: A novel approach for determining the effective tunneling mass of electrons in 2 and other high-κ alternative gate dielectrics for advanced CMOS devices, Microelectron. Eng. 72, 257–262 (2004) CrossRefGoogle Scholar
  3. J. Robertson: High dielectric constant oxides, Eur. Phys. J. Appl. Phys. 28, 265–291 (2004) CrossRefGoogle Scholar
  4. M. V. Fischetti, D. A. Neumayer, E. A. Cartier: Effective electron mobility in Si inversion layers in metal/oxide/semiconductor systems with a high-κinsulator: The role of remote phonon scattering, J. Appl. Phys. 90, 4587 (2001) CrossRefGoogle Scholar
  5. V. V. Afanas'ev, M. Houssa, A. Stesmans, M. M. Heyns: Electron energy barriers between (100)Si and ultrathin stacks of 2, 2O3, and 2 insulators, Appl. Phys. Lett. 78, 3073–3075 (2001) CrossRefGoogle Scholar
  6. S. A. Chambers, T. Droubay, T. C. Kaspar, M. Gutowski: Experimental determination of valence band maxima for SrTiO3, TiO2 and SrO and the associated valence band offsets with Si(001), J. Vac. Sci. Technol. B 22, 2205–2215 (2004) CrossRefGoogle Scholar
  7. R. Ludeke, M. T. Cuberes, E. Cartier: Local transport and trapping issues in 2O3 gate oxide structures, Appl. Phys. Lett. 76, 2886–2888 (2000) CrossRefGoogle Scholar
  8. R. Williams: Photoemission of electrons from silicon into silicon dioxide, Phys. Rev. 140, A 569–A 575 (1965) CrossRefGoogle Scholar
  9. A. Goodman: Photoemission of electrons from silicon and gold into silicon dioxide, Phys. Rev. 144, 588–593 (1966) CrossRefGoogle Scholar
  10. A. M. Goodman: Photoemission of holes from silicon into silicon dioxide, Phys. Rev. 152, 780–784 (1966) CrossRefGoogle Scholar
  11. A. M. Goodman: Photoemission of electrons from n-type degenerate silicon into silicon dioxide, Phys. Rev. 152, 785–787 (1966) CrossRefGoogle Scholar
  12. R. J. Powell: Interface barrier energy determination from voltage dependence of photoinjected currents, J. Appl. Phys. 41, 2424–2432 (1970) CrossRefGoogle Scholar
  13. R. J. Powell, C. N. Berglund: Photoinjection studies of charge distributions in oxides of MOS structures, J. Appl. Phys. 42, 4390–4397 (1971) CrossRefGoogle Scholar
  14. C. N. Berglund, R. J. Powell: Photoinjection into 2: electron scattering in the image force potential well, J. Appl. Phys. 42, 573–579 (1971) CrossRefGoogle Scholar
  15. V. K. Adamchuk, V. V. Afanas'ev: Internal photoemission spectroscopy of semiconductor-insulator interfaces, Prog. Surf. Sci. 41, 111–211 (1992) CrossRefGoogle Scholar
  16. G. Seguini, E. Bonera, S. Spiga, G. Scarel, M. Fanciulli: Energy-band diagram of metal/2O3/silicon structures, Appl. Phys. Lett. 85, 5316–5318 (2004) CrossRefGoogle Scholar
  17. P. V. Dressendorfer, R. C. Barker: Photoemission measurements of interface barrier energies for tunnel oxides on silicon, Appl. Phys. Lett. 36, 933–935 (1980) CrossRefGoogle Scholar
  18. V. V. Afanas'ev, M. Houssa, A. Stesmans, M. M. Heyns: Band alignments in metal–oxide–silicon structures with atomic-layer deposited 2O3, J. Appl. Phys. 91, 3079–3084 (2002) CrossRefGoogle Scholar
  19. E. A. Kraut, R. W. Grant, J. R. Waldrop, S. P. Kowalczyk: Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurements of semiconductor interface potentials, Phys. Rev. Lett. 44, 1620–1623 (1980) CrossRefGoogle Scholar
  20. E. A. Kraut, R. W. Grant, J. R. Waldrop, S. P. Kowalczyk: Semiconductor core level to valence-band maximum binding-energy differences: Precise determination by X-ray photoelectron spectroscopy, Phys. Rev. B 28, 1965–1977 (1983) CrossRefGoogle Scholar
  21. S. Miyazaki, H. Nishimura, M. Fukuda, L. Ley, J. Ristein: Structure and electronic states of ultrathin SiO2 thermally grown on Si(100) and Si(111) surfaces, Appl. Surf. Sci. 114/114, 585–589 (1997) CrossRefGoogle Scholar
  22. J. R. Chelikowsky, M. L. Cohen: Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Phys. Rev. B 14, 556 (1976) CrossRefGoogle Scholar
  23. S. Miyazaki, M. Narasaki, M. Ogasawara, M. Hirose: Characterization of ultrathin zirconium oxide films on silicon using photoelectron spectroscopy, Microelectron. Eng. 59, 373–378 (2001) CrossRefGoogle Scholar
  24. S. Miyazaki: Photoemission study of energy-band alignments and gap-state density distributions for high-κ gate dielectrics, J. Vac. Sci. Technol. B 19, 2212–2216 (2001) CrossRefGoogle Scholar
  25. F. G. Bell, L. Ley: Photoemission study of SiOx (0x 2) alloys, Phys. Rev. B 37, 8383–8393 (1988) CrossRefGoogle Scholar
  26. D. Briggs, M. P. Seah: Pratical Surface Analysis, vol. 1 (Wiley, New York 1990) Google Scholar
  27. A. Ohta, M. Yamaoka, S. Miyazaki: Photoelectron spectroscopy of ultrathin yttrium oxide films on Si(100), Microelectron. Eng. 72, 154–159 (2004) CrossRefGoogle Scholar
  28. T. Hattori, T. Yoshida, T. Shiraishi, K. Takahashi, H. Nohira, S. Joumori, K. Nakajima, M. Suzuki, K. Kimura, I. Kashiwagi, C. Ohshima, S. Ohmi, H. Iwai: Composition, chemical structure, and electronic band structure of rare earth oxide/Si(100) intefacial transition layer, Microelectron. Eng. 72, 283–287 (2004) CrossRefGoogle Scholar
  29. V. V. Afanas'ev, A. Stesmans, F. Chen, S. A. Campbell: Electrical conduction and band offsets in Si/(1-x)O2/metal structures, J. Appl. Phys. 95, 7936–7939 (2004) CrossRefGoogle Scholar
  30. R. Puthenkovilakam, J. P. Chang: Valence band structure and band alignment at the 2/Si interface, Appl. Phys. Lett. 84, 1353–1355 (2004) CrossRefGoogle Scholar
  31. S. J. Wang, A. C. H. Huan, Y. L. Foo, J. W. Chai, J. S. Pan, Q. Li, Y. F. Dong, Y. P. Feng, C. K. Ong: Energy-band alignments at 2/Si, SiGe, and Ge intefaces, Appl. Phys. Lett. 85, 4418–4420 (2004) CrossRefGoogle Scholar
  32. V. V. Afanas'ev, A. Stesmans, F. Chen, X. Shi, S. A. Campbell: Internal photoemission of electrons and holes from (100)Si into 2, Appl. Phys. Lett. 81, 1053–1055 (2002) CrossRefGoogle Scholar
  33. R. Puthenkovilakam, J. P. Chang: An accurate determination of barrier heights at the 2/Si interfaces, J. Appl. Phys. 96, 2701–2707 (2004) CrossRefGoogle Scholar
  34. S. Sayan, T. Emge, E. Garfunkel, X. Zhao, L. Wielunski, A. Bartynski, D. Vanderbilt, J. S. Suehle, S. Suzer, M. Banaszak-Holl: Band alignment issues related to 2/2/p-Si gate stacks, J. Appl. Phys. 96, 7485–7491 (2004) CrossRefGoogle Scholar
  35. Q. Li, S. J. Wang, K. B. Li, A. C. H. Huan, J. W. Chai, J. S. Pan, C. K. Ong: Photoemission study of energy-band alignment for 2/Si system, Appl. Phys. Lett. 85, 6155–6157 (2004) CrossRefGoogle Scholar
  36. V. V. Afanas'ev, A. Stesmans, C. Zhao, M. Caymax, Z. M. Rittersma, J. W. Maes: Band alignment at the interface of (100)Si with (1-x)O high-κ dilectric layers, Appl. Phys. Lett. 86, 072108–1–072108–3 (2005) Google Scholar
  37. H. J. Osten, J. P. Liu, H. J. Müssig: Band gap and band discontinuities at crystalline 2O3/Si(001) heterojunctions, Appl. Phys. Lett. 80, 297–299 (2002) CrossRefGoogle Scholar
  38. V. A. Rozhkov, A. Y. Trusova, I. G. Berezhnoi: Energy barriers and trapping centers in silicon metal-insulators-semiconductor structures with samarium and ytterbium oxide insulators, Tech. Phys. Lett. 24, 217–219 (1998) CrossRefGoogle Scholar
  39. V. V. Afanas'ev, A. Stesmans, M. Passlack, N. Medendorp: Band offsets at the interfaces of GaAs(100) with 0.4-xO0.6 insulators, Appl. Phys. Lett. 85, 597–599 (2004) CrossRefGoogle Scholar
  40. V. V. Afanas'ev, A. Stesmans, C. Zhao, M. Caymax, T. Heeg, J. Schubert, Y. Jia, G. Schlom, G. Lucovsky: Band alignment between (100)Si and complex rare earth/transition metal oxides, Appl. Phys. Lett. 85, 5917–5919 (2004) CrossRefGoogle Scholar
  41. L. F. Edge, D. G. Schlom, S. A. Chambers, E. Cicerrella, J. L. Freeout, B. Holländer, J. Schubert: Measurement of the band offsets between amorphous 3 and silicon, Appl. Phys. Lett. 84, 726–728 (2004) CrossRefGoogle Scholar
  42. G. Seguini, S. Spiga, E. Bonera, M. Fanciulli, A. Reyes Huamantinco, C. J. Först, C. R. Ashman, P. E. Blöchl, A. Dimoulas, G. Mavrou: Band alignment at the 2Hf2O7/Si(001) interface, Unpublished (2005) Google Scholar
  43. G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli: Atomic-layer deposition of Lu2O3, Appl. Phys. Lett. 85, 630–632 (2004) CrossRefGoogle Scholar
  44. M. Perego, G. Seguini, G. Scarel, M. Fanciulli: X-ray photoelectron spectroscopy study of energy band alignment of rare earth oxides, Unpublished (2005) Google Scholar
  45. S. Spiga, C. Wiemer, G. Tallarida, G. Scarel, S. Ferrari, G. Seguini, M. Fanciulli: Effects of the oxygen precursor on the electrical and structural properties of 2 films grown by atomic layer deposition on Ge, Appl. Phys. Lett. 87, 112904–1–3 (2005) CrossRefGoogle Scholar
  46. V. V. Afanas'ev, A. Stesmans: Energy band alignment at the (100)Ge/2 interface, Appl. Phys. Lett. 84, 2319–2321 (2004) CrossRefGoogle Scholar
  47. G. Seguini: Band alignment of 2O3 on Ge, Private Communication (2005) Google Scholar
  48. G. Seguini: Band alignment of 2O3 on GaAs, Private Communication (2005) Google Scholar
  49. V. V. Afanas'ev, A. Stesmans: Trapping of ^+ and ^+ ions at the Si/2 inteface, Phys. Rev. B 60, 5506–5512 (2000) CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.CNR-INFM MDM National LaboratoryAgrate Brianza (MI)Italy

Personalised recommendations