Charge Traps in High-k Dielectrics: Ab Initio Study of Defects in Pr-Based Materials

Part of the Topics in Applied Physics book series (TAP, volume 106)


In the nearest future, a dielectric with a dielectric constant k several times higher than that of SiO2 will be needed for the fabrication of CMOS (Complementary Metal-Oxide-Semiconductor) devices. Numerous metal oxides and silicates are investigated as candidates and various deposition and annealing techniques are being developed to improve the film quality. These techniques try to utilize the effects attributed to alloying, incorporation of nitrogen, gettering of oxygen, etc. At the same time, the basic knowledge on the microscopic properties of these materials needs improvement, particularly in the case of rare-earth oxides.

We present our fundamental understanding of point defects in Pr-based dielectrics (PrO1.5, PrO2, PrO1.75+delta, and PrSiO3.5) in the context of their influence on the electrical properties of the Metal Oxide Semiconductor (MOS) stack. From this point of view, there are three major issues associated with the presence of point defects: bulk charge traps, Trap Assisted Tunneling (TAT) centers, and electrically active interface states. The paper focuses on the first of these issues, as seen from the perspective of ab initio total energy calculations for atomic and electronic structures of point defects. We discuss the dependence of point defect formation on the chemical potential of oxygen and the role of impurities such as moisture, silicon, and boron. In particular, we derive a model of Si-related fixed charge and argue that this model is valid also for typical high-k dielectrics and for thermal SiO2/Si films.


71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler: Density-functional theory calculations for poly-atomic systems: Electronic structure, static and elastic properties and ab initio molecular dynamics, Comp. Phys. Comm. 107, 187 (1997) CrossRefGoogle Scholar
  2. A. Fissel, J. D, H. J. Osten: Photoemission and ab initio theoretical study ot interface and film formation during epitaxial growth and annealing of praseodymium oxide on (001), J. Appl. Phys. 91, 8986 (2002) CrossRefGoogle Scholar
  3. D. M. Ceperley, B. J. Alder: Ground state of the electron gas by the stochastic method, Phys. Rev. Lett. 45, 567 (1980) CrossRefGoogle Scholar
  4. J. P. Perdew, A. Zunger: Self-interaction correction to density-functional approximation for many-electron systems, Phys. Rev. B 23, 5048 (1981) CrossRefGoogle Scholar
  5. D. R. Haman: Generalized norm-conserving pseudopotentials, Phys. Rev. B 40, 2980 (1989) CrossRefGoogle Scholar
  6. G. B. Bachelet, D. R. Hamann, M. A. Schlüter: Pseudopotentials that work: From to , Phys. Rev. B 26, 4199 (1982) CrossRefGoogle Scholar
  7. H.-J. Müssig, H. J. Osten, E. Bugiel, J. D, A. Fissel, T. Guminskaya, K. Ignatovich, J. P. Liu, B. P. Zaumsei, V. Zavodinsky: Epitaxial praseodymium oxide: A new high-k dielectric, in Proc. 2001 IEEE Integrated Reliability Workshop (South Lake Tahoe, CA (USA) 2001) p. 1 Google Scholar
  8. J. D, V. Zavodinsky, A. Fleszar: Pseudopotential study of 2 and 2 in fluorite phase, Microelectron. Reliab. 41, 1093 (2001) CrossRefGoogle Scholar
  9. H. Bergman: Gmelin Handbuch der Anorganischen Chemie, Seltenerdelemente, Teil C1 (Springer, Berlin, Heidelberg 1974) Google Scholar
  10. D. R. Lide (Ed.): Handbook of Chemistry and Physics, 73 ed. (CRC Press, Boca Raton, FL (USA) 1993–1994) Google Scholar
  11. N. F. Mott: Charged defects in vitreous silica, J. Non-Cryst. Solids 40, 1 (1980) CrossRefGoogle Scholar
  12. G. N. Greaves: Intrinsic and modified defect states in silica, J. Non-Cryst. Solids 32, 295 (1979) CrossRefGoogle Scholar
  13. G. Lucovsky: Spectroscopic evidence for valence-alternation-pair defect states in vitreous 2, Phil. Mag. B 39, 513 (1979) Google Scholar
  14. E. P. O'Reilly, J. Robertson: Theory of defects in vitreous silicon dioxide, Phys. Rev. B 27, 3780 (1983) CrossRefGoogle Scholar
  15. S. T. Pantelides, R. Buczko, M. Rammamoorthy, S. Rashkeev, G. Duscher, S. J. Pennycook: Local and global bonding at the -SiO2 interface, in Y. J. Chabal (Ed.): Fundamental Aspects of Silicon Oxidation (Springer, Berlin, Heidelberg 2001) p. 107 Google Scholar
  16. H. Inaba, K. Naito: Simultaneous measurements of oxygen pressure, composition, and electrical conductivity of praseodymium oxides: I. 7O12 and 9O16 phases, J. Solid State Chem. 50, 100 (1983) CrossRefGoogle Scholar
  17. G. V. Subba Rao, S. Ramdas, P. N. Mehrotra, C. N. R. Rao: Electrical transport in rare-earth oxides, J. Solid State Chem. 2, 377 (1970) CrossRefGoogle Scholar
  18. H. Lakhadari, D. Vuillaume, J. C. Bourgoin: Spatial and energetic distributions of -SiO2 near-interface states, Phys. Rev. B 38, 13124 (1988) CrossRefGoogle Scholar
  19. D. Vuillaume, J. C. Bourgoin, M. Lannoo: Oxide traps in -SiO2 structures characterized by tunnel emission with deep-level transient spectroscopy, Phys. Rev. B 34, 1171 (1986) CrossRefGoogle Scholar
  20. G. Lippert, J. D, V. Melnik, R. Sorge, C. Wenger, P. Zaumseil, H.-J. Müssig: segregation into 2O3 and 2O3 high-k gate oxides, Appl. Phys. Lett. 86, 042902 (2005) CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Institute for Semiconductor Physics, IHPFrankfurt (Oder)Germany
  2. 2.University of WürzburgWürzburgGermany

Personalised recommendations