Skip to main content

Evolved Neural Reflex-Oscillators for Walking Machines

  • Conference paper
Mechanisms, Symbols, and Models Underlying Cognition (IWINAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3561))

  • 585 Accesses

Abstract

Legged locomotion has not been understood well enough to build walking machines that autonomously navigate through rough terrain. The current biological understanding of legged locomotion implies a highly decentralised and modular control structure. Neurocontrollers were developed for single, morphological distinct legs of a hexapod walking machine through artificial evolution and physical simulation. The results showed extremely small reflex-oscillators which inherently relied on the sensori-motor loop and a hysteresis effect. Relationships with biological findings are shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehmann, S.: How animals move: An integrative view. Science 288, 100–106 (2000)

    Article  Google Scholar 

  2. Wendler, G.: The co-ordination of walking movements in arthropods. Symp. Soc. exp. Biol. 20, 229–249 (1966)

    Google Scholar 

  3. Orlovsky, G., Deliagina, T., Grillner, S.: Neuronal Control of Locomotion. Oxford University Press, Oxford (1999)

    Google Scholar 

  4. Schmidt, J., Fischer, H., Büschges, A.: Pattern generation for walking and searching movements of a stick insect leg. ii. control of motoneural activity. J. Neurophysiology 85, 354–361 (2001)

    Google Scholar 

  5. Bässler, U., Büschges, A.: Pattern generation for stick insect walking movements – multisensory control of a locomotor program. Brain Research Reviews 27, 65–88 (1998)

    Article  Google Scholar 

  6. Ekeberg, O., Blümel, M., Büschges, A.: Dynamic simulation of insect walking. Arthropod Structure & Development 33, 287–300 (2004)

    Article  Google Scholar 

  7. Brooks, R.A.: Intelligence without representation. Artificial Intelligence, 139–159 (1991)

    Google Scholar 

  8. Brooks, R.A.: New approaches to robotics. Science 253, 1227–1232 (1991)

    Article  Google Scholar 

  9. Seys, C.W., Beer, R.D.: Evolving walking: The anatomy of an evolutionary search. In: From Animals to Animats 8: Proceedings of the Eighth International Conference on Simulation of Adaptive Behavior, Los Angeles, CA (2004)

    Google Scholar 

  10. Brooks, R.A.: A robot that walks: Emergent behaviors from a carefully evolved network. Technical Report AI MEMO 1091. MIT (1989)

    Google Scholar 

  11. Schmitz, J., Dean, J., Kindermann, T., Schumm, M., Cruse, H.: A biologically inspired controller for hexapod walking: Simple solutions by exploiting physical properties. Biol. Bull. 200, 195–200 (2001)

    Article  Google Scholar 

  12. Huelse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16, 249–266 (2004)

    Article  Google Scholar 

  13. Pasemann, F.: A simple chaotic neuron. Physica D 104, 205–211 (1997)

    Article  MATH  Google Scholar 

  14. Heinzel, H.G., Weimann, J.M., Marder, E.: The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: An in situ endoscopic and electrophysiological examination. The Journal of Neuroscience 13, 1793–1803 (1993)

    Google Scholar 

  15. Dean, J.: Animats and what they can tell us. Trends in Cognitive Science 2, 60–67 (1998)

    Article  MathSciNet  Google Scholar 

  16. Dean, J., Kindermann, T., Schmitz, J., Schumm, M., Cruse, H.: Control of walking in the stick insect: From behavior and physiology to modeling. Autonomous Robots 7, 271–288 (1999)

    Article  Google Scholar 

  17. Prochazka, A., Gillard, D., Bennett, D.J.: Implications of positive feedback in the control of movement. The Journal of Neurophysiology 77, 3237–3251 (1997)

    Google Scholar 

  18. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13, 15–21 (1990)

    Article  Google Scholar 

  19. Grillner, S., Deliagina, T., Ekeberg, O., Manira, A.E., Hill, R.H., Lansner, A., Orlovsky, G.N., Wallen, P.: Neural networks that coordinate locomotion and body orientation in lamprey. Trends Neurosci. 18, 270–279 (1995)

    Article  Google Scholar 

  20. Grillner, S., Ekeberg, O., Manira, A.E., Lansner, A., Parker, D., Tegner, J., Wallen, P.: Intrinsic function of a neuronal network - a vertebrate central pattern generator. Brain Res. Rev. 26, 184–197 (1998)

    Article  Google Scholar 

  21. Selverston, A.I., Panchin, Y.V., Arshavsky, Y.I., Orlovsky, G.N.: Shared Features of Invertebrate Central Pattern Generators. In: Neurons, Networks, and Motor Behavior, pp. 105–117. MIT Press, Cambridge (1999)

    Google Scholar 

  22. Büschges, A., Ludwar, B.C., Bucher, D., Schmidt, J., DiCaprio, R.A.: Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience 19, 1856–1862 (2004)

    Article  Google Scholar 

  23. Delcomyn, F.: Walking robots and the central and peripheral control of locomotion in insects. Autonomous Robots 7, 259–270 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von Twickel, A., Pasemann, F. (2005). Evolved Neural Reflex-Oscillators for Walking Machines. In: Mira, J., Álvarez, J.R. (eds) Mechanisms, Symbols, and Models Underlying Cognition. IWINAC 2005. Lecture Notes in Computer Science, vol 3561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499220_39

Download citation

  • DOI: https://doi.org/10.1007/11499220_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26298-5

  • Online ISBN: 978-3-540-31672-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics