Skip to main content

Designing a Predictable Internet Backbone with Valiant Load-Balancing

  • Conference paper
Quality of Service – IWQoS 2005 (IWQoS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3552))

Included in the following conference series:

Abstract

Network operators would like their network to support current and future traffic matrices, even when links and routers fail. Not surprisingly, no backbone network can do this today: It is hard to accurately measure the current matrix, and harder still to predict future ones. Even if the matrices are known, how do we know a network will support them, particularly under failures? As a result, today’s networks are designed in a somewhat ad-hoc fashion, using rules-of-thumb and crude estimates of current and future traffic.

Previously we proposed the use of Valiant Load-balancing (VLB) for backbone design. It can guarantee 100% throughput to any traffic matrix, even under link and router failures. Our initial work was limited to homogeneous backbones in which routers had the same capacity. In this paper we extend our results in two ways: First, we show that the same qualities of service (guaranteed support of any traffic matrix with or without failure) can be achieved in a realistic heterogeneous backbone network; and second, we show that VLB is optimal, in the sense that the capacity required by VLB is very close to the lower bound of total capacity needed by any architecture in order to support all traffic matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, D., Cohen, E.: Making intra-domain routing robust to changing and uncertain traffic demands: Understanding fundamental tradeoffs. In: Proceedings of the ACM SIGCOMM 2003 Conference (2003)

    Google Scholar 

  2. Chang, C.-S., Lee, D.-S., Jou, Y.-S.: Load balanced Birkhoff-von Neumann switches, Part I: One-stage buffering. In: Proceedings of IEEE HPSR 2001 (May 2001)

    Google Scholar 

  3. Keslassy, I., Chang, C.-S., McKeown, N., Lee, D.-S.: Optimal load-balancing. In: Proceedings of IEEE Infocom 2005 (March 2005)

    Google Scholar 

  4. Keslassy, I., Chuang, S.-T., Yu, K., Miller, D., Horowitz, M., Solgaard, O., McKeown, N.: Scaling Internet routers using optics. In: Proceedings of ACM SIGCOMM 2003, Computer Communication Review, October 2003, vol. 33(4), pp. 189–200 (2003)

    Google Scholar 

  5. Kodialam, M., Lakshman, T.V., Sengupta, S.: Efficient and robust routing of highly variable traffic. In: HotNets III (November 2004)

    Google Scholar 

  6. Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrix estimation: Existing techniques and new directions. In: Proceedings of ACM SIGCOMM 2002, Pittsburgh, USA (August 2002)

    Google Scholar 

  7. Prasanna, G., Vishwanath, A.: Traffic constraints instead of traffic matrices: Capabilities of a new approach to traffic characterization. In: Providing quality of service in heterogeneous environments: Proceedings of the 18th International Teletraffic Congress (2003)

    Google Scholar 

  8. Valiant, L.G.: A scheme for fast parallel communication. SIAM Journal on Computing 11(2), 350–361 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhang, Y., Roughan, M., Lund, C., Donoho, D.: An information-theoretic approach to traffic matrix estimation. In: Proceedings of ACM SIGCOMM 2003, pp. 301–312. ACM Press, New York (2003)

    Google Scholar 

  10. Zhang-Shen, R., McKeown, N.: Designing a predictable Internet backbone network. In: HotNets III (November 2004)

    Google Scholar 

  11. Zhang-Shen, R., McKeown, N.: Designing a predictable Internet backbone with Valiant load-balancing (extended version). Stanford HPNG Technical Report TR05-HPNG-040605 (April 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang-Shen, R., McKeown, N. (2005). Designing a Predictable Internet Backbone with Valiant Load-Balancing. In: de Meer, H., Bhatti, N. (eds) Quality of Service – IWQoS 2005. IWQoS 2005. Lecture Notes in Computer Science, vol 3552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499169_15

Download citation

  • DOI: https://doi.org/10.1007/11499169_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26294-7

  • Online ISBN: 978-3-540-31659-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics