Skip to main content

Disjoint Cycles: Integrality Gap, Hardness, and Approximation

  • Conference paper
Book cover Integer Programming and Combinatorial Optimization (IPCO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3509))

Abstract

In the edge-disjoint cycle packing problem we are given a graph G and we have to find a largest set of edge-disjoint cycles in G. The problem of packing vertex-disjoint cycles in G is defined similarly. The best approximation algorithms for edge-disjoint cycle packing are due to Krivelevich et al. [16], where they give an \(O\sqrt{\rm log n}\)-approximation for undirected graphs and an \(O(\sqrt{n})\)-approximation for directed graphs. They also conjecture that the problem in directed case has an integrality gap of \(\Omega(\sqrt{\rm n})\). No non-trivial lower bound is known for the integrality gap of this problem. Here we show that both problems of packing edge-disjoint and packing vertex-disjoint cycles in a directed graph have an integrality gap of \(\Omega(\frac{log n}{log log n})\). This is the first super constant lower bound for the integrality gap of these problems. We also prove that both problems are quasi-NP-hard to approximate within a factor of Ω(log1 − −  ε n), for any ε > 0. For the problem of packing vertex-disjoint cycles, we give the first approximation algorithms with ratios O(log n) (for undirected graphs) and \(O(\sqrt{n})\) (for directed graphs). Our algorithms work for the more general case where we have a capacity c v on every vertex v and we are seeking a largest set \(\mathcal{C}\) of cycles such that at most c v cycles of \(\mathcal{C}\) contain v.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. J. of the ACM 45(3), 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. J. of the ACM 45(1), 70–122 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bafna, V., Berman, P., Fujito, T.: Constant ratio approximation of the weighted feedback vertex set problem for undirected graphs. In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 142–151. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Balister, P.: Packing digraphs with directed closed trials. Combinatorics, Probability, and Computing 12(1), 1–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Becker, A., Geiger, D.: Approximation algorithms for the loop cutset problem. In: Proc. of 10th Conf. on Uncertainty in ARtificial Intelligence, pp. 60–68 (1994)

    Google Scholar 

  6. Carpara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. J. Algorithms 48(1), 239–256 (2003)

    Article  MathSciNet  Google Scholar 

  7. Carr, B., Vempala, S.: Randomized meta-rounding. In: Proc. of STOC 2000 (2000)

    Google Scholar 

  8. Chekuri, C., Khanna, S.: Edge Disjoint Paths Revisited. In: Proc. of SODA 2003 (2003)

    Google Scholar 

  9. Cheriyan, J., Salavatipour, M.R.: Hardness and Approximation Results for Packing Steiner Trees Problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 180–191. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs. Operations Research Letters 22, 111–118 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Erdös, P., Pósa, L.: On the maximal number of disjoint circuits of a graph. Publ. Math. Debrecen 9, 3–12 (1962)

    MATH  MathSciNet  Google Scholar 

  12. Even, G., Naor, J., Schieber, B., Zosin, L.: Approximating minimum subset feedback sets in undirected graphs with applications. SIAM J. Discrete Math. 13(2), 255–267 (2000)

    Article  MathSciNet  Google Scholar 

  13. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems. J. of Computer and System Sciences 67(3), 473–496 (2003); Earlier version in STOC 1999

    Article  MATH  MathSciNet  Google Scholar 

  15. Jain, K., Mahdian, M., Salavatipour, M.R.: Packing Steiner trees. In: Proc. SODA 2003 (2003)

    Google Scholar 

  16. Krivelevich, M., Nutov, Z., Yuster, R.: Approximation algorithms for cycle packing problems. To appear in Proc. of SODA 2005 (2005)

    Google Scholar 

  17. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: New upper bounds on the order of cages. Electronic Journal of Combinatorics 14(R13), 1–11 (1997)

    MathSciNet  Google Scholar 

  18. Lau, L.C.: An approximate max-Steiner-tree-packing min-Steiner-cut theorem. In: Proc. 45th IEEE FOCS 2004 (2004)

    Google Scholar 

  19. Ma, B., Wang, L.: On the inapproximability of disjoint paths and minimum steiner forest with bandwidth constraints. J. of Computer and Systems Sciences 60(1), 1–12 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Raz, R.: A parallel repetition theorem. SIAM J. of Computing 27(3), 763–803 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salavatipour, M.R., Verstraete, J. (2005). Disjoint Cycles: Integrality Gap, Hardness, and Approximation. In: Jünger, M., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2005. Lecture Notes in Computer Science, vol 3509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496915_5

Download citation

  • DOI: https://doi.org/10.1007/11496915_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26199-5

  • Online ISBN: 978-3-540-32102-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics