Identifying Similar Surface Patches on Proteins Using a Spin-Image Surface Representation

  • Mary Ellen Bock
  • Guido M. Cortelazzo
  • Carlo Ferrari
  • Concettina Guerra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3537)


We apply a spin image representation for 3D objects used in computer vision to the problem of comparing protein surfaces. Due to the irregularities of the protein surfaces, this is a much more complex problem than comparing regular and smooth surfaces. The spin images capture local features in a way that is useful for finding related active sites on the surface of two proteins. They reduce the three-dimensional local information to two dimensions which is a significant computational advantage.

We try to find a collection of pairs of points on the two proteins such that the corresponding members of the pairs for one of the proteins form a surface patch for which the corresponding spin images are a “match”. Preliminary results are presented which demonstrate the feasibility of the method.


Protein Surface Tangent Plane Visible Area Surface Point Surface Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartlett, G.J., Todd, A.E., Thornton, J.M.: Inferring protein function from structure. In: Bourne, P.E., Weissig, H. (eds.) Structural Bioinformatics, Wiley- Liss., Chichester (2003)Google Scholar
  2. 2.
    Chua, C., Jarvis, R.: 3D free form surface registration and object recognition. Int. Journal of Computer Vision 17, 77–99 (1996)CrossRefGoogle Scholar
  3. 3.
    Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 708–713 (1983)CrossRefGoogle Scholar
  4. 4.
    Jones, S., Thornton, J.M.: Analysis of protein-protein interaction sites using surface patches. Journal of Molecular Biology 272, 121–132 (1997)CrossRefGoogle Scholar
  5. 5.
    Johnson, A., Hebert, M.: Using Spin-Images for efficient multiple model recognition in cluttered 3-D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 433–449 (1999)CrossRefGoogle Scholar
  6. 6.
    Johnson, A., Hebert, M.: Surface matching for object recognition in complex three-dimensional scenes. Image and Vision Computing 16, 635–651 (1998)CrossRefGoogle Scholar
  7. 7.
    Kinoshita, N., Furui, J., Nakamura, H.: Identification of protein functions from a molecular surface database. eF-site. J. Struct. Funct. Genomics 2, 9–22 (2001)CrossRefGoogle Scholar
  8. 8.
    Kinoshita, N., Sadanami, K., Kidera, A., Go, N.: Structural motif pf phosphatebinding site common to various protein superfamilies: all-against-all structural comparison of protein mononucleotide complexes. Protein Engineering 12, 11–14 (1999)CrossRefGoogle Scholar
  9. 9.
    Kleywegt, G.: Recognition of spatial motifs in protein structures. Journal of Molecular Biology 285, 1887–12897 (1999)CrossRefGoogle Scholar
  10. 10.
    Kobayashi, N., Go, N.: A method to search for similar protein local structures at ligand binding sites and its application to adenine recognition. Eur Biophys Journal 26, 135–144 (1997)CrossRefGoogle Scholar
  11. 11.
    Lo Conte, L., Chothia, C., Janin, J.: The atomic structure of protein-protein interaction sites. Journal of Molecular Biology 285, 1021–1031 (1999)Google Scholar
  12. 12.
    Norel, S.L., Fischer, D., Wolfson, H.J., Nussinov, R.: Molecular surface recognition by a computer vision based technique. Protein Eng. 7, 39–46 (1994)CrossRefGoogle Scholar
  13. 13.
    Via, A., Ferre, F., Branetti, B., Helmer Citterich, M.: Protein surface similarities: a survey of methods to describe and compare protein surfaces. Cell: Mol. Life Sci. 57, 1970–1977 (2000)CrossRefGoogle Scholar
  14. 14.
    Wallace, A., Borkakoti, N., Thornton, J.: TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites. Protein Science 6(11), 2008–2023 (1997)Google Scholar
  15. 15.
    Zhang, B., Rychlewski, L., Pawlowski, K., Fetrow, J., Skolnick, J., Godzik, A.: From fold predictions to function prediction: automation of functional site conservation analysis for functional genome predictions. Protein Science 8(5), 1104–1115 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mary Ellen Bock
    • 1
  • Guido M. Cortelazzo
    • 2
  • Carlo Ferrari
    • 2
  • Concettina Guerra
    • 2
  1. 1.Department of StatisticsPurdue UniversityUSA
  2. 2.Department of Information EngineeringUniversity of PadovaItaly

Personalised recommendations