Exact and Approximation Algorithms for DNA Tag Set Design

  • Ion I. Măndoiu
  • Dragoş Trincă
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3537)


In this paper we propose new solution methods for designing tag sets for use in universal DNA arrays. First, we give integer linear programming formulations for two previous formalizations of the tag set design problem, and show that these formulations can be solved to optimality for instance sizes of practical interest by using general purpose optimization packages. Second, we note the benefits of periodic tags, and establish an interesting connection between the tag design problem and the problem of packing the maximum number of vertex-disjoint directed cycles in a given graph. We show that combining a simple greedy cycle packing algorithm with a previously proposed alphabetic tree search strategy yields an increase of over 40% in the number of tags compared to previous methods.


Integer Linear Programming Formulation Reporter Probe Tree Search Algorithm Simple Greedy Algorithm Bruijn Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Affymetrix, Inc. Geneflex tag array technical note no. 1, available online at,
  2. 2.
    Ben-Dor, A., Karp, R., Schwikowski, B., Yakhini, Z.: Universal DNA tag systems: a combinatorial design scheme. Journal of Computational Biology 7(3-4), 503–519 (2000)CrossRefGoogle Scholar
  3. 3.
    BenDor, A., Hartman, T., Schwikowski, B., Sharan, R., Yakhini, Z.: Towards optimally multiplexed applications of universal DNA tag systems. In: Proc. 7th Annual International Conference on Research in Computational Molecular Biology, pp. 48–56 (2003)Google Scholar
  4. 4.
    Brenneman, A., Condon, A.: Strand design for biomolecular computation. Theor. Comput. Sci. 287(1), 39–58 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brenner, S.: Methods for sorting polynucleotides using oligonucleotide tags. US Patent 5,604,097 (1997)Google Scholar
  6. 6.
    Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. Journal of Algorithms 48(1), 239–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hirschhorn, J.N., et al.: SBE-TAGS: An array-based method for efficient singlenucleotide polymorphism genotyping. PNAS 97(22), 12164–12169 (2000)CrossRefGoogle Scholar
  8. 8.
    Kaderali, L.: Selecting Target Specific Probes for DNA Arrays. PhD thesis, Köln University (2001)Google Scholar
  9. 9.
    Krivelevich, M., Nutov, Z., Yuster, R.: Approximation algorithms for cycle packing problems. In: Proc. ACM-SIAM Annual Symposium on Discrete Algorithms, pp. 556–561 (2005)Google Scholar
  10. 10.
    Lothaire, M.: Combinatorics on Words. Encylopedia of Mathematics and Its Applications, vol. 17, p. xix+238. Addison-Wesley, Reading (1983)zbMATHGoogle Scholar
  11. 11.
    Morris, M.S., Shoemaker, D.D., Davis, R.W., Mittmann, M.P.: Selecting tag nucleic acids. U.S. Patent 6,458,530 B1 (2002)Google Scholar
  12. 12.
    Măndoiu, I.I., Prăjescu, C., Trincă, D.: Improved tag set design and multiplexing algorithms for universal arrays. In: Proc. 1st International Workshop on Bioinformatics Research and Applications, IWBRA (2005) (to appear)Google Scholar
  13. 13.
    Măndoiu, I.I., Trincă, D.: Exact and approximation algorithms for DNA tag set design. ACM Computing Research Repository, cs.DS/0503057 (2005)Google Scholar
  14. 14.
    Gerry, N.P., et al.: Universal DNA microarray method for multiplex detection of low abundance point mutations. J. Mol. Biol. 292(2), 251–262 (1999)CrossRefGoogle Scholar
  15. 15.
    Salavatipour, M.R., Verstraete, J.: Disjoint cycles: Integrality gap, hardness, and approximation. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 51–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    SantaLucia, J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465 (1998)CrossRefGoogle Scholar
  17. 17.
    Wallace, R.B., Shaffer, J., Murphy, R.F., Bonner, J., Hirose, T., Itakura, K.: Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 6(11), 6353–6357 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ion I. Măndoiu
    • 1
  • Dragoş Trincă
    • 1
  1. 1.CSE DepartmentUniversity of ConnecticutStorrsUSA

Personalised recommendations