DNA Compression Challenge Revisited: A Dynamic Programming Approach

  • Behshad Behzadi
  • Fabrice Le Fessant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3537)


Standard compression algorithms are not able to compress DNA sequences. Recently, new algorithms have been introduced specifically for this purpose, often using detection of long approximate repeats. In this paper, we present another algorithm, DNAPack, based on dynamic programming. In comparison with former existing programs, it compresses DNA slightly better, while the cost of dynamic programming is almost negligible.


Compression Ratio Compression Algorithm Fibonacci Number Dynamic Program Approach Arithmetic Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apostolico, A., Fraenkel, A.S.: Robust transmission of unbounded strings using Fibonacci representations. IEEE trans. inform. 33(2), 238–245 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Apostolico, A., Lonardi, S.: Compression of biological sequences by greedy offline textual substitution. In: Proc. DCC 2000, pp. 143–152 (2000)Google Scholar
  3. 3.
    Chen, X., Kwong, S., Li, M.: A compression Algorithm for DNA sequences and its applications in genome comparison. In: The 10th workshop on Genome Informtics (GIW 1999), Tokyo, Japan, pp. 51–61 (1999)Google Scholar
  4. 4.
    Chen, X., Kwong, S., Li, M.: A compression Algorithm for DNA sequences. IEEE Engineering in Medicine and Biolgoy Magazine 20(4), 61–66 (2001)CrossRefGoogle Scholar
  5. 5.
    Chen, X., Li, M., Ma, B., Tromp, J.: DNACompress: fast and effective DNA sequence compression. Bioinformatics 18, 1696–1698 (2002)CrossRefGoogle Scholar
  6. 6.
    Chang, C.-H.: DNAC: A Compression Algorithm for DNA Sequences by Nonoverlapping Approximate Repeats. Master Thesis (2004)Google Scholar
  7. 7.
    Grumbach, S., Tahi, F.: Compression of DNA Sequences. In: Data compression conference, pp. 340–350. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  8. 8.
    Grumbach, S., Tahi, F.: A new Challenge for compression algorithms: genetic sequences. Journal of Information Processing and Management 30, 866–875 (1994)Google Scholar
  9. 9.
    Li, M., Badger, J.H., Chen, X., Kwong, S., Kearney, P., Zhang, H.: An information based sequences distance and its application to whole motochondrial genome phylogeny. Bioinformatics 17(2), 149–154 (2001)CrossRefGoogle Scholar
  10. 10.
    Matsumuto, T., Sadakane, K., Imai, H.: Biological sequence compression algorithms. Genome Inform. Ser. Wokrshop Genome Inform. 11, 43–52 (2000)Google Scholar
  11. 11.
    Ma, B., Tromp, J., Li, M.: PatternHunter–faster and more sensitive homology search. Bioinformatics 18, 440–445 (2002)CrossRefGoogle Scholar
  12. 12.
    Manzini, G., Rastero, M.: A simple and fast DNA compressor. Sofware: Practice and Experience 34(14), 1397–1411 (2004)CrossRefGoogle Scholar
  13. 13.
    Rivals, E., Delahaye, J.-P., Dauchet, M., Delgrange, O.: A Guaranteed Compression Scheme for Repetitive DNA Sequences. In: Data Compression Conference (1996)Google Scholar
  14. 14.
    Willems, F.M.J., Shtrakov, Y.M., Tjalkens, T.J.: The Context Tree Weighting Method: Basic Properties. IEEE Trans. Inform. Theory IT-41(3), 653–664 (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Behshad Behzadi
    • 1
  • Fabrice Le Fessant
    • 1
  1. 1.LIXEcole PolytechniquePalaiseau cedexFrance

Personalised recommendations