Skip to main content

Using PQ Trees for Comparative Genomics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3537))

Abstract

Permutations on strings representing gene clusters on genomes have been studied earlier in [3, 12, 14, 17, 18] and the idea of a maximal permutation pattern was introduced in [12]. In this paper, we present a new tool for representation and detection of gene clusters in multiple genomes, using PQ trees [6]: this describes the inner structure and the relations between clusters succinctly, aids in filtering meaningful from apparently meaningless clusters and also gives a natural and meaningful way of visualizing complex clusters. We identify a minimal consensus PQ tree and prove that it is equivalent to a maximal πpattern [12] and each subgraph of the PQ tree corresponds to a non-maximal permutation pattern. We present a general scheme to handle multiplicity in permutations and also give a linear time algorithm to construct the minimal consensus PQ tree. Further, we demonstrate the results on whole genome data sets. In our analysis of the whole genomes of human and rat we found about 1.5 million common gene clusters but only about 500 minimal consensus PQ trees, and, with E Coli K-12 and B Subtilis genomes we found only about 450 minimal consensus PQ trees out of about 15,000 gene clusters. Further, we show specific instances of functionally related genes in the two cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandersson, M., Cawley, S., Pachter, L.: SLAM- Cross-species gene finding and alignment with a generalized pair hidden Markov model. Genome Research 13(3), 496–502 (2003)

    Article  Google Scholar 

  2. Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing ancestral gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bergeron, A., Corteel, S., Raffinot, M.: The algorithmic of gene teams. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 464–476. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal Distance without Hurdles and Fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Booth, K., Leuker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bray, N., Couronne, O., Dubchak, I., Ishkhanov, T., Pachter, L., Poliakov, A., Rubin, E., Ryaboy, D.: Strategies and Tools for Whole-Genome Alignments. Genome Research 13(1), 73–80 (2003)

    Article  Google Scholar 

  8. Bray, N., Dubchak, I., Pachter, L.: AVID: A Global Alignment Program. Genome Research 13(1), 97–102 (2003)

    Article  Google Scholar 

  9. Bryan, S.K., Hagensee, M.E., Moses, R.E.: DNA Polymerase III Requirement for Repair of DNA Damage Caused by Methyl Methanesulfonate and Hydrogen Peroxide. Journal of Bacteriology 16(10), 4608–4613 (1987)

    Google Scholar 

  10. Burns, K.H., Matzuk, M.M., Roy, A., Yan, W.: Tektin3 encodes an evolutionarily conserved putative testicular micro tubules-related protein expressed preferentially in male germ cells. Molecular Reproduction and Development 67, 295–302 (2004)

    Article  Google Scholar 

  11. Didier, G.: Common intervals of two sequences. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 17–24. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Eres, R., Parida, L., Landau, G.M.: A combinatorial approach to automatic discovery of cluster-patterns. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 139–150. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. He, X., Goldwasser, M.H.: Identifying conserved gene clusters in the presence of orthologous groups. In: Proceedings of the Eighth Annual International Conferences on Research in Computational Molecular Biology (RECOMB), pp. 272–280 (2004)

    Google Scholar 

  14. Heber, S., Stoye, J.: Finding all common intervals of k permutations. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 207–218. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), vol. 15, pp. 761–770 (2004)

    Google Scholar 

  16. Mulley, J., Holland, P.: Small genome, big insights. Nature 431, 916–917 (2004)

    Article  Google Scholar 

  17. Schmidt, T., Stoye, J.: Quadratic time algorithms for finding common intervals in two and more sequences. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 347–358. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Landau, G.M., Parida, L., Weimann, O. (2005). Using PQ Trees for Comparative Genomics. In: Apostolico, A., Crochemore, M., Park, K. (eds) Combinatorial Pattern Matching. CPM 2005. Lecture Notes in Computer Science, vol 3537. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496656_12

Download citation

  • DOI: https://doi.org/10.1007/11496656_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26201-5

  • Online ISBN: 978-3-540-31562-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics