The Median Problem for the Reversal Distance in Circular Bacterial Genomes

  • Enno Ohlebusch
  • Mohamed Ibrahim Abouelhoda
  • Kathrin Hockel
  • Jan Stallkamp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3537)


In the median problem, we are given a distance or dissimilarity measure d, three genomes G 1,G 2, and G 3, and we want to find a genome G (a median) such that the sum ∑\(_{i=1}^{\rm 3}\) d(G,G i ) is minimized. The median problem is a special case of the multiple genome rearrangement problem, where one wants to find a phylogenetic tree describing the most “plausible” rearrangement scenario for multiple species. The median problem is NP-hard for both the breakpoint and the reversal distance [5,14]. To the best of our knowledge, there is no approach yet that takes biological constraints on genome rearrangements into account. In this paper, we make use of the fact that in circular bacterial genomes the predominant mechanism of rearrangement are inversions that are centered around the origin or the terminus of replication [8,10,18]. This constraint simplifies the median problem significantly. More precisely, we show that the median problem for the reversal distance can be solved in linear time for circular bacterial genomes.


Median Problem Procedure Median Genome Rearrangement Orientation Vector Circular Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8, 483–491 (2001)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Proc. Genome Informatics Workshop, pp. 25–34. Univ. Academy Press, Tokyo (1997)Google Scholar
  4. 4.
    Bourque, B., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Research 12(1), 26–36 (2002)Google Scholar
  5. 5.
    Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Proc. 3rd Annual International Conference on Research in Computational Molecular Biology, pp. 84–94. ACM Press, New York (1999)Google Scholar
  6. 6.
    Caprara, A.: On the practical solution of the reversal median problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 238–251. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Dobzhansky, T., Sturtevant, A.H.: Inversions in the chromosomes of Drosophila pseudoobscura. Genetics 23, 28–64 (1938)Google Scholar
  8. 8.
    Eisen, J.A., Heidelberg, J.F., White, O., Salzberg, S.L.: Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biology 1(6), 1–9 (2000)CrossRefGoogle Scholar
  9. 9.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). Journal of the ACM 48, 1–27 (1999)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hughes, D.: Evaluating genome dynamics: The constraints on rearrangements within bacterial genomes. Genome Biology 1(6), 1–8 (2000)CrossRefGoogle Scholar
  11. 11.
    Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Comput. 29(3), 880–892 (1999)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since divergence of man and mouse. Proceedings of the National Academy of Sciences of the United States of America 81(3), 814–818 (1984)CrossRefGoogle Scholar
  14. 14.
    Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Technical Report TR98-071, Electronic Colloquium on Computational Complexity (1998)Google Scholar
  15. 15.
    Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp. 121–135. Springer, Heidelberg (1992)Google Scholar
  16. 16.
    Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology 5(3), 555–570 (1998)CrossRefGoogle Scholar
  17. 17.
    Siepel, A.C., Moret, B.M.E.: Finding an optimal inversion median: Experimental results. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Tiller, E.R.M., Collins, R.: Genome rearrangement by replication-directed translocation. Nature Genetics 26, 195–197 (2000)CrossRefGoogle Scholar
  19. 19.
    Watterson, G.A., Ewens, W.J., Hall, T.E., Morgan, A.: The chromosome inversion problem. Journal of Theoretical Biology 99, 1–7 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Enno Ohlebusch
    • 1
  • Mohamed Ibrahim Abouelhoda
    • 1
  • Kathrin Hockel
    • 1
  • Jan Stallkamp
    • 1
  1. 1.Faculty of Computer ScienceUniversity of UlmUlmGermany

Personalised recommendations