Advertisement

An Efficient Algorithm for Generating Super Condensed Neighborhoods

  • Luís M. S. Russo
  • Arlindo L. Oliveira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3537)

Abstract

Indexing methods for the approximate string matching problem spend a considerable effort generating condensed neighborhoods. Here, we point out that condensed neighborhoods are not a minimal representation of a pattern neighborhood. We show that we can restrict our attention to super condensed neighborhoods which are minimal. We then present an algorithm for generating Super Condensed Neighborhoods. The algorithm runs in O(mm / ws), where m is the pattern size, s is the size of the super condensed neighborhood and w the size of the processor word. Previous algorithms took O(mm / wc) time, where c is the size of the condensed neighborhood. We further improve this algorithm by using Bit-Parallelism and Increased Bit-Parallelism techniques. Our experimental results show that the resulting algorithm is very fast.

Keywords

Edit Distance Approximate String Match Computer Word Dynamic Programming Table Canonical Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R.: Text retrieval: Theory and practice. In: 12th IFIP World Computer Congress, vol. I, pp. 465–476. Elsevier Science, Amsterdam (1992)Google Scholar
  2. 2.
    Baeza-Yates, R., Gonnet, G.: A new approach to text searching. Communications of the ACM 35(10), 74–82 (1992)CrossRefGoogle Scholar
  3. 3.
    Cobbs, A.L.: Fast approximate matching using suffix trees. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 41–54. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge (1999)Google Scholar
  5. 5.
    Hyyrö, H.: Explaining and extending the bit-parallel approximate string matching algorithm of myers. Technical Report A-2001-10, Dept. of Computer and Information Sciences, University of Tampere, Tampere, Finland (2001)Google Scholar
  6. 6.
    Hyyrö, H.: Practical Methods for Approximate String Matching. PhD thesis, University of Tampere (2003)Google Scholar
  7. 7.
    Hyyrö, H., Fredriksson, K., Navarro, G.: Increased bit-parallelism for approximate string matching. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 285–298. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Hyyrö, H., Navarro, G.: A practical index for genome searching. In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol. 2857, pp. 341–349. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Hyyrö, H.: An improvement and an extension on the hybrid index for approximate string matching. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 208–209. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Myers, E.: A sublinear algorithm for approximate keyword matching. Algorithmica (12), 345–374 (1994)Google Scholar
  11. 11.
    Myers, G.: A fast bit-vector algorithm for approximate pattern matching based on dynamic programming. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 1–13. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33(1), 31–88 (2001)CrossRefGoogle Scholar
  13. 13.
    Navarro, G., Baeza-Yates, R.: A hybrid indexing method for approximate string matching. Journal of Discrete Algorithms 1(1), 205–239 (2000)MathSciNetGoogle Scholar
  14. 14.
    Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J.: Indexing methods for approximate string matching. IEEE Data Engineering Bulletin 24(4), 19–27 (2001)Google Scholar
  15. 15.
    Ukkonen, E.: Finding approximate patterns in strings. Journal of Algorithms, 132–137 (1985)Google Scholar
  16. 16.
    Ukkonen, E.: Approximate string matching over suffix trees. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 228–242. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  17. 17.
    Wu, S., Manber, U.: Fast text searching allowing errors. Communications of the ACM 35(10), 83–91 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Luís M. S. Russo
    • 1
  • Arlindo L. Oliveira
    • 1
  1. 1.IST / INESC-IDLisboaPortugal

Personalised recommendations