Skip to main content

Analysis of a Stochastic Model of Adaptive Task Allocation in Robots

  • Conference paper
Engineering Self-Organising Systems (ESOA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3464))

Included in the following conference series:

Abstract

Adaptation is an essential requirement for self–organizing multi–agent systems functioning in unknown dynamic environments. Adaptation allows agents to change their actions in response to environmental changes or actions of other agents in order to improve overall system performance, and remain robust even while a sizeable fraction of agents fails. In this paper we present and study a simple model of adaptation for task allocation problem in a multi–robot system. In our model robots have to choose between two types of task, and the goal is to achieve desired task division without any explicit communication between robots. Robots estimate the state of the environment from repeated local observations and decide what task to choose based on these observations. We model robots and observations as stochastic processes and study the dynamics of individual robots and the collective behavior. We validate our analysis with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agassounon, W., Martinoli, A.: A macroscopic model of an aggregation experiment using embodied agents in groups of time-varying sizes. In: Proc. of the IEEE Conf. on System, man and Cybernetics SMC-2002, Hammamet, Tunisia. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  2. Goldberg, D., Matarić, M.J.: Coordinating mobile robot group behavior using a model of interaction dynamics. In: Proceedings of the Third International Conference on Autonomous Agents (Agents 1999), Seattle,WA, USA, pp. 100–107. ACM Press, New York (1999)

    Chapter  Google Scholar 

  3. Huberman, B.A., Hogg, T.: The behavior of computational ecologies. In: Huberman, B.A. (ed.) The Ecology of Computation, pp. 77–115. Elsevier, North Holland, Amsterdam (1988)

    Google Scholar 

  4. Ijspeert, A.J., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots 11(2), 149–171 (2001)

    Article  MATH  Google Scholar 

  5. Jones, C.V., Matarić, M.J.: Adaptive task allocation in large-scale multirobot systems. In: Proceedings of the 2003 (ICRA 2003), Las Vegas, NV, IEEE, Los Alamitos (2003)

    Google Scholar 

  6. Kazadi, S., Abdul-Khaliq, A., Goodman, R.: On the convergence of puck clustering systems. Robotics and Autonomous Systems 38(2), 93–117 (2002)

    Article  MATH  Google Scholar 

  7. Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots 13(2), 127–141 (2002)

    Article  MATH  Google Scholar 

  8. Lerman, K., Galstyan, A.: Macroscopic Analysis of Adaptive Task Allocation in Robots. In: Proceedings of the International Conference on Intelligent Robotics ans Systems (IROS-2003), Las Vegas, NV (October 2003)

    Google Scholar 

  9. Lerman, K., Galstyan, A., Martinoli, A., Ijspeert, A.: A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life Journal 7(4), 375–393 (2001)

    Article  Google Scholar 

  10. Li, L., Martinoli., A., Abu-Mostafa, Y.: Emergent Specialization in Swarm Systems. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 261–266. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Martinoli, A., Ijspeert, A.J., Gambardella, L.M.: A probabilistic model for understanding and comparing collective aggregation mechanisms. In: Floreano, D., Nicoud, J.-D., Mondada, F. (eds.) ECAL 1999. LNCS(LNAI), vol. 1674, pp. 575–584. Springer, Heidelberg (1999)

    Google Scholar 

  12. Martinoli, A., Easton, K.: Modeling swarm robotic systems. In: Siciliano, B., Dario, P. (eds.) Proc. of the Eight Int. Symp. on Experimental Robotics ISER-2002, Sant’Angelo d’Ischia, Italy, Springer Tracts in Advanced Robotics, New York, NY, vol. 5, pp. 297–306. Springer, Heidelberg (2003)

    Google Scholar 

  13. Matarić, M.J.: Learning in behavior-based multi-robot systems: Policies, models, and other agents. Cognitive Systems Research 2(1), 81–93 (2001)

    Article  Google Scholar 

  14. Riedmiller, M., Merke, A.: Karlsruhe brainstormers - a reinforcement learning approach to robotic soccer II. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, p. 435. Springer, Heidelberg (2002)

    Google Scholar 

  15. Stone, P., Sutton, R.S.: Scaling reinforcement learning toward RoboCup soccer. In: Proc. 18th International Conf. on Machine Learning, pp. 537–544. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  16. Sugawara, K., Sano, M.: Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system. Physica D100, 343–354 (1997)

    Google Scholar 

  17. Sugawara, K., Sano, M., Yoshihara, I., Abe, K.: Cooperative behavior of interacting robots. Artificial Life and Robotics 2, 62–67 (1998)

    Article  Google Scholar 

  18. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier Science, Amsterdam (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galstyan, A., Lerman, K. (2005). Analysis of a Stochastic Model of Adaptive Task Allocation in Robots. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds) Engineering Self-Organising Systems. ESOA 2004. Lecture Notes in Computer Science(), vol 3464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494676_11

Download citation

  • DOI: https://doi.org/10.1007/11494676_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26180-3

  • Online ISBN: 978-3-540-31901-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics