Skip to main content

Accepting Networks of Splicing Processors

  • Conference paper
New Computational Paradigms (CiE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3526))

Included in the following conference series:

Abstract

We present linear time solutions to two NP-complete problems, namely SAT and the directed Hamiltonian Path Problem (HPP), based on accepting networks of splicing processors (ANSP) having all resources (size, number of rules and symbols) linearly bounded by the size of the given instance. The underlying structure of these ANSPs does not depend on the number of clauses, in the case of SAT, and the number of edges, in the case of HPP. Furthermore, the running time of the ANSP solving HPP does not depend on the number of edges of the given graph and this network provides all solutions, if any, of the given instance of HPP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete problems with networks of evolutionary processors. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Networks of evolutionary processors. Acta Informatica 39, 517–529 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Castellanos, J., Leupold, P., Mitrana, V.: Descriptional and computational complexity aspects of hybrid networks of evolutionary processors. Theoretical Computer Science (in press)

    Google Scholar 

  4. Csuhaj-Varjú, E., Kari, L., Păun, G.: Test tube distributed systems based on splicing. Computers and AI 15(2-3), 211–232 (1996)

    MATH  Google Scholar 

  5. Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)

    Google Scholar 

  6. Csuhaj-Varjú, E., Mitrana, V.: Evolutionary systems: a language generating device inspired by evolving communities of cells. Acta Informatica 36, 913–926 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In: Plander, I. (ed.) Artificial Intelligence and Information-Control Systems of Robots 1994, pp. 31–40. World Sci. Publ., Singapore (1994)

    Google Scholar 

  8. Fahlman, S.E., Hinton, G.E., Seijnowski, T.J.: Massively parallel architectures for AI: NETL, THISTLE and Boltzmann machines. In: Proc. AAAI National Conf. on AI, pp. 109–113. William Kaufman, Los Altos (1983)

    Google Scholar 

  9. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  10. Hartmanis, J., Lewis II, P.M., Stearns, R.E.: Hierarchies of memory limited computations. In: Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical Design, pp. 179–190 (1965)

    Google Scholar 

  11. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 533–546 (1965)

    Article  MathSciNet  Google Scholar 

  12. Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)

    Google Scholar 

  13. Manea, F., Martín-Vide, C., Mitrana, V.: Solving 3CNF-SAT and HPP in Linear Time Using WWW. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 269–280. Springer, Heidelberg (2005) (in press)

    Chapter  Google Scholar 

  14. Martin-Vide, C., Mitrana, V., Perez-Jimenez, M., Sancho-Caparrini, F.: Hybrid networks of evolutionary processors. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 401–412. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Păun, G.: Distributed architectures in DNA computing based on splicing: Limiting the size of components. Unconventional Models of Computation, pp. 323–335. Springer, Berlin (1998)

    Google Scholar 

  16. Sankoff, D., et al.: Gene order comparisons for phylogenetic inference:Evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89, 6575–6579 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manea, F., Martín-Vide, C., Mitrana, V. (2005). Accepting Networks of Splicing Processors. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds) New Computational Paradigms. CiE 2005. Lecture Notes in Computer Science, vol 3526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494645_38

Download citation

  • DOI: https://doi.org/10.1007/11494645_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26179-7

  • Online ISBN: 978-3-540-32266-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics