Skip to main content

The Fan Theorem and Uniform Continuity

  • Conference paper
New Computational Paradigms (CiE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3526))

Included in the following conference series:

Abstract

In presence of continuous choice the fan theorem is equivalent to each pointwise continuous function f from the Cantor space to the natural numbers being uniformly continuous. We investigate whether we can prove this equivalence without the use of continuous choice. By strengthening the assumption of pointwise continuity of f to the assertion that f has a modulus of pointwise continuity which itself is pointwise continuous, we obtain the desired equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P., Rathjen, M.: Notes on Constructive Set Theory. Report No. 40, Institut Mittag-Leffler, The Royal Swedish Academy of Sciences (2000/2001)

    Google Scholar 

  2. Bishop, E., Bridges, D.: Constructive Analysis. In: Graph Reduction 1986, vol. 279, Springer, Heidelberg (1967)

    Google Scholar 

  3. Loeb, I.: Equivalents of the (Weak) Fan Theorem. Annals of Pure and Applied Logic 132(1), 51–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  5. Ishihara, H.: Constructive Reverse Mathematics: Compactness Properties. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis, Oxford University Press, Oxford (to appear)

    Google Scholar 

  6. Ishihara, H.: Informal constructive reverse mathematics. In: Feasibility of theoretical arguments of mathematical analysis on computer (Japanese) (Kyoto 2003) (2003); Sūrikaisekikenkyūsho Kōkyūroku 1381, 108–117 (2004)

    Google Scholar 

  7. Moerdijk, I.: Heine-Borel Does not Imply the Fan Theorem. J. Symb. Log. 49(2), 514–519 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics. An Introduction, vol. 1. North-Holland Publ. Co., Amsterdam (1988)

    Google Scholar 

  9. Veldman, W.: The Fan Theorem as an Axiom (preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, J. (2005). The Fan Theorem and Uniform Continuity. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds) New Computational Paradigms. CiE 2005. Lecture Notes in Computer Science, vol 3526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494645_3

Download citation

  • DOI: https://doi.org/10.1007/11494645_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26179-7

  • Online ISBN: 978-3-540-32266-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics