Skip to main content

Abstract Geometrical Computation: Turing-Computing Ability and Undecidability

  • Conference paper
New Computational Paradigms (CiE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3526))

Included in the following conference series:

Abstract

In the Cellular Automata (CA) literature, discrete lines inside (discrete) space-time diagrams are often idealized as Euclidean lines in order to analyze a dynamics or to design CA for special purposes. In this article, we present a parallel analog model of computation corresponding to this idealization: dimensionless signals are moving on a continuous space in continuous time generating Euclidean lines on (continuous) space-time diagrams. Like CA, this model is parallel, synchronous, uniform in space and time, and uses local updating. The main difference is that space and time are continuous and not discrete (ie ℝ instead of ℤ). In this article, the model is restricted to ℚ in order to remain inside Turing-computation theory. We prove that our model can carry out any Turing-computation through two-counter automata simulation and provide some undecidability results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ilachinski, A.: Cellular automata –a discrete universe. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  2. Boccara, N., Nasser, J., Roger, M.: Particle-like structures and interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular automaton rules. Phys. Rev. A 44, 866–875 (1991)

    Article  Google Scholar 

  3. Durand-Lose, J.: Parallel transient time of one-dimensional sand pile. Theoret. Comp. Sci. 205, 183–193 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hordijk, W., Shalizi, C.R., Crutchfield, J.P.: An upper bound on the products of particle interactions in cellular automata. Phys. D 154, 240–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jakubowsky, M.H., Steiglitz, K., Squier, R.: Computing with solitons: a review and prospectus. In: [35], pp. 277–297 (2002)

    Google Scholar 

  6. Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array. J. ACM 12, 388–394 (1965)

    Article  MATH  Google Scholar 

  7. Goto, E.: Ōtomaton ni kansuru pazuru [Puzzles on automata]. In: Kitagawa, T. (ed.) Jōhōkagaku eno michi [The Road to information science], pp. 67–92. Kyoristu Shuppan Publishing Co., Tokyo (1966)

    Google Scholar 

  8. Varshavsky, V.I., Marakhovsky, V.B., Peschansky, V.A.: Synchronization of interacting automata. Math. System Theory 4, 212–230 (1970)

    Article  MathSciNet  Google Scholar 

  9. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional cellular automata. Complex Systems 4, 299–318 (1990)

    MATH  MathSciNet  Google Scholar 

  10. Mazoyer, J.: On optimal solutions to the Firing squad synchronization problem. Theoret. Comp. Sci. 168, 367–404 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Durand-Lose, J.: Intrinsic universality of a 1-dimensional reversible cellular automaton. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 439–450. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Durand-Lose, J.: Reversible space-time simulation of cellular automata. Theoret. Comp. Sci. 246, 117–129 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Delorme, M., Mazoyer, J.: Signals on cellular automata. In: [35], pp. 234–275 (2002)

    Google Scholar 

  14. Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata. Theoret. Comp. Sci. 217, 53–80 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Durand-Lose, J.: Calculer géométriquement sur le plan – machines à signaux. Habilitation à diriger des recherches, École Doctorale STIC, Université de Nice-Sophia Antipolis (2003)

    Google Scholar 

  16. Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-model. Theoret. Comp. Sci. 73, 1–46 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Durand-Lose, J.: Abstract geometrical computation for black hole computation (extended abstract). In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 175–186. Springer, Heidelberg (2005)

    Google Scholar 

  18. Asarin, E., Maler, O.: Achilles and the Tortoise climbing up the arithmetical hierarchy. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 471–483. Springer, Heidelberg (1995)

    Google Scholar 

  19. Bournez, O.: Some bounds on the computational power of piecewise constant derivative systems. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 143–153. Springer, Heidelberg (1997)

    Google Scholar 

  20. Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoret. Comp. Sci. 210, 21–71 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Weihrauch, K.: Introduction to computable analysis. Texts in Theoretical computer science. Springer, Berlin (2000)

    Google Scholar 

  22. Moore, C.: Recursion theory on the reals and continuous-time computation. Theoret. Comp. Sci. 162, 23–44 (1996)

    Article  MATH  Google Scholar 

  23. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)

    Google Scholar 

  24. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. System Sci. 50, 132–150 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Orponen, P.: A survey of continuous-time computation theory. In: Du, D.Z., Ko, K.J. (eds.) Advances in Algorithms, languages and complexity, pp. 209–224. Kluwer Academic Publisher, Dordrecht (1994)

    Google Scholar 

  26. Šíma, J., Orponen, P.: Computing with continuous-time Liapunov systems. In: STOC 2001, pp. 722–731. ACM Press, New York (2001)

    Google Scholar 

  27. Pour-El, M.B.: Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Trans. Amer. Math. Soc. 199, 1–28 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  28. Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoret. Comp. Sci. 138, 67–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Minsky, M.: Finite and infinite machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  30. Eberbach, E., Wegner, P.: Beyond Turing machines. Bull. EATCS 81, 279–304 (2003)

    MATH  MathSciNet  Google Scholar 

  31. Hamkins, J.D., Lewis, A.: Infinite time turing machines. J. Symb. Log. 65, 567–604 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hamkins, J.D.: Infinite time Turing machines: Supertask computation. Minds and Machines 12, 521–539 (2002)

    Article  MATH  Google Scholar 

  33. Earman, J., Norton, J.D.: Forever is a day: supertasks in Pitowsky and Malament-Hogarth spacetimes. Philosophy of Science 60, 22–42 (1993)

    Article  MathSciNet  Google Scholar 

  34. Etesi, G., Nemeti, I.: Non-Turing computations via Malament-Hogarth space-times. Int. J. Theor. Phys. 41, 341–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Adamatzky, A. (ed.): Collision based computing. Springer, Heidelberg (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand-Lose, J. (2005). Abstract Geometrical Computation: Turing-Computing Ability and Undecidability. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds) New Computational Paradigms. CiE 2005. Lecture Notes in Computer Science, vol 3526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494645_14

Download citation

  • DOI: https://doi.org/10.1007/11494645_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26179-7

  • Online ISBN: 978-3-540-32266-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics