Trajectory Planning Applied to the Estimation of Cardiac Activation Circuits

  • Lorena González
  • Jerónimo J. Rubio
  • Enrique Baeyens
  • Juan C. Fraile
  • Jose R. Perán
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3504)

Abstract

A procedure for helping the professional in electrophysiology in performing catheter ablation as a definitive treatment of certain types of arrythmia is presented here. This procedure uses trajectory planning techniques that have been developed in the robotics field. Starting off from signals obtained in an electrophysiological study of a patient, an electrical model of the heart with zones of different propagation properties is generated. Trajectory planning techniques are used to obtain the qualitative behavior of the heart under different types of arrythmia. A good point for ablation is computed as one that interrupts the trajectory that is sustaining the arrythmia.

Keywords

Catheter Ablation Trajectory Planning Accessory Pathway Delta Wave Purkinje System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Myerberg, R.J., Kessier, K.M., Kimura, S., Basset, A.L., Cox, M.M., Castellanos, A.: Life-threatening ventricular arrhythmias: The link between epidemiology and pathophysiology. In: Zipes, D.P., Jalife, J. (eds.) Cardiac electrophysiology. From cell to bedside. W.B. Saunders Company, Philadelphia (1995)Google Scholar
  2. 2.
    Rezk, G.: Instrumentación para Electrofisiología Intervensionista. Monografías del XIII Seminario de Ingeniería Biomédica 2004, Facultades de Medicina e Ingeniería, Universidad de la República Oriental del Uruguay, Junio (2004)Google Scholar
  3. 3.
    Singer, I.: Interventional electrophysiology. Willians & Wilkins, Baltimore (1997)Google Scholar
  4. 4.
    ACC/AHA guidelines for clinical intracardiac electrophysiological and catheter ablation procedures. Circulation 92, 675–691 (1995)Google Scholar
  5. 5.
    Berbari, E.J., Landr, P., Geselowitz, D.B., et al.: The methodology of cardiac mapping. In: Shenasa, M., Borggrefe, M., Breithhardt, G. (eds.) Cardiac mapping, Mount Kisco, New York, pp. 11–34. Futura Publishing, Armonk NY (1993)Google Scholar
  6. 6.
    Helguera, M., Pinski, S., de Elizalde, G., Corrado, G., Schargrodsky, H., Bazzino, O.: Ablación por radiofrecuencia de arritmias cardiacas. Servicio de Electrofisiología y Dispositivos Implantables. Departamento de Cardiología. Hospital Italiano de Buenos Aires. ArgentinaGoogle Scholar
  7. 7.
    Latombe, J.C.: Robot motion Planning. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  8. 8.
    The Scientific and Computing Institute (SCI), SCIRun User Guide, para SCIRun/BioPSE version 1.22.0, University of Utah (2004), http://www.sci.utah.edu
  9. 9.
    Freudenberg, J., Schiemann, T., Tiede, U., Hohne, K.H.: Simulation of cardiac excitation patterns in a three-dimensional anatomical heart atlas. Comput. Biol. Med. 30(4), 191–205 (2000)CrossRefGoogle Scholar
  10. 10.
    Johnson, C.R., Mohr, M., Rüde, U., Samsonov, A., Zyp, K.: Multilevel methods for bioelectric field inverse problems. In: Barth, T.J., Chan, T.F., Haimes, R. (eds.) Lecture Notes in Computational Science and Engineering-Multiscale and Multiresolution Methods: Theory and Applications, pp. 331–346. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Faverjon, B., Tournassoud, P.: A local based method for path planning of manipulators with a high number of degrees of freedom. In: IEEE Int. Conf. on Robotics and Automation, pp. 1152–1159 (1987)Google Scholar
  12. 12.
    Kondo, K.: Motion Planning with Six Degrees of Freedom by Multistrategic Bidirectional Heuristic Free-Space Enumeration. IEEE Transactions on Robotics and Automation 7(3), 267–277 (1991)CrossRefGoogle Scholar
  13. 13.
    Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Rob. Autom. 12, 566–580 (1996)CrossRefGoogle Scholar
  14. 14.
    von de Berg, J.P., Overmars, M.H.: Roadmap-based motion planning in dynamic environments. Institute of information and computing sciences, Utrecht University, Technical Report UU-CS-2004-020 (2004), www.cs.uu.nl

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lorena González
    • 1
  • Jerónimo J. Rubio
    • 2
  • Enrique Baeyens
    • 3
  • Juan C. Fraile
    • 3
  • Jose R. Perán
    • 3
  1. 1.División de Ingeniería BiomédicaCARTIFValladolidSpain
  2. 2.Instituto de Ciencias del CorazonHospital Clínico UniversitarioValladolidSpain
  3. 3.Depto. de Ingeniería de Sistemas y AutomáticaUniversidad de ValladolidValladolidSpain

Personalised recommendations