Skip to main content

Cardiac Function Estimation from MRI Using a Heart Model and Data Assimilation: Advances and Difficulties

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3504))

Abstract

In this article, we present a framework to estimate local myocardium contractility using clinical MRI, a heart model and data assimilation. First, we build a generic anatomical model of the ventricles including muscle fibre orientations and anatomical subdivisions. Then, this model is deformed to fit a clinical MRI, using a semi-automatic fuzzy segmentation, an affine registration method and a local deformable biomechanical model. An electromechanical model of the heart is then presented and simulated. Data assimilation makes it possible to estimate local contractility from given displacements. Presented results on adjustment to clinical data and on assimilation with simulated data are very promising. Current work on model calibration and estimation of patient parameters open up possibilities to apply this framework in a clinical environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andriantsimiavona, R., Griffin, L., Hill, D., Razavi, R.: Simple cardiac MRI segmentation. In: International Society for Magnetic Resonance in Medicine Scientific Meeting, vol. 6, p. 951 (2003)

    Google Scholar 

  2. Arts, T., Bovendeerd, P., van der Toorn, A., Geerts, L., Kerckhoffs, R., Prinzen, F.: Modules in cardiac modeling: Mechanics, circulation, and depolarization wave. In: Katila, T., Magnin, I.E., Clarysse, P., Montagnat, J., Nenonen, J. (eds.) FIMH 2001. LNCS, vol. 2230, pp. 83–90. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Bestel, J., Clément, F., Sorine, M.: A biomechanical model of muscle contraction. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1159–1161. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Cerqueira, M., Weissman, N., Dilsizian, V., Jacobs, A., Kaul, S., Laskey, W., Pennell, D., Rumberger, J., Ryan, T., Verani, M.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105, 539–542 (2002)

    Article  Google Scholar 

  5. Chandrashekara, R., Mohiaddin, R., Rueckert, D.: Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration. IEEE Transactions on Medical Imaging 23(10), 1245–1250 (2004)

    Article  Google Scholar 

  6. Chapelle, D., Clément, F., Génot, F., Le Tallec, P., Sorine, M., Urquiza, J.: A physiologically-based model for the active cardiac muscle contraction. In: Katila, T., Magnin, I.E., Clarysse, P., Montagnat, J., Nenonen, J. (eds.) FIMH 2001. LNCS, vol. 2230, pp. 128–133. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Chapelle, D., Sainte-Marie, J., Cimrman, R.: Modeling and estimation of the cardiac electromechanical activity. In: Proceedings of the ECCOMAS 2004 Conference (2004)

    Google Scholar 

  8. Costa, K., Holmes, J., McCulloch, A.: Modelling cardiac mechanical properties in three dimensions. Philosophical Transactions of the Royal Society of London 359(1783), 1233–1250 (2001)

    MATH  Google Scholar 

  9. Courtier, P., Talagrand, O.: Variational assimilation of meteorological observations with the adjoint vorticity equation. Quart. J. Roy. Meteorol. Soc. 113, 1311–1347 (1987)

    Article  Google Scholar 

  10. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1, 445–466 (1961)

    Article  Google Scholar 

  11. Hsu, E., Henriquez, C.: Myocardial fiber orientation mapping using reduced encoding diffusion tensor imaging. Journal of Cardiovascular Magnetic Resonance 3, 325–333 (2001)

    Article  Google Scholar 

  12. Hunter, P., Pullan, A., Smaill, B.: Modeling total heart function. Annual Review of Biomedical Engineering 5, 147–177 (2003)

    Article  Google Scholar 

  13. Huxley, A.F.: Muscle structure and theories of contraction. Progress in Biophysics & Biological Chemistry 7, 255–318 (1957)

    Google Scholar 

  14. Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME Trans.–Journal of Basic Engineering 82(Series D), 35–45 (1960)

    Google Scholar 

  15. Katila, T., Magnin, I., Clarysse, P., Montagnat, J., Nenonen, J. (eds.): FIMH 2001. LNCS, vol. 2230. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  16. Lions, J.L.: Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles, Dunod (1968)

    Google Scholar 

  17. MacDonald, D.A.: Blood flow in arteries. Edward Arnold Press, London (1974)

    Google Scholar 

  18. Magnin, I., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds.): FIMH 2003. LNCS, vol. 2674. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  19. Mercier, J., DiSessa, T., Jarmakani, J., Nakanishi, T., Hiraishi, S., Isabel-Jones, J., Friedman, W.: Two-dimensional echocardiographic assessment of left ventricular volumes and ejection fraction in children. Circulation 65, 962–969 (1982)

    Google Scholar 

  20. Mirsky, I., Parmley, W.W.: Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circul. Research 33, 233–243 (1973)

    Google Scholar 

  21. Peters, D., Ennis, D., Rohatgi, P., Syed, M., McVeigh, E., Arai, A.: 3D breath-held cardiac function with projection reconstruction in steady state free precession validated using 2D cine MRI. Journal of Magnetic Resonance Imaging 20(3), 411–416 (2004)

    Article  Google Scholar 

  22. Ryf, S., Spiegel, M., Gerber, M., Boesiger, P.: Myocardial tagging with 3D-CSPAMM. Journal of Magnetic Resonance Imaging 16(3), 320–325 (2002)

    Article  Google Scholar 

  23. Sainte-Marie, J., Chapelle, D., Sorine, M.: Data assimilation for an electro-mechanical model of the myocardium. In: Bathe, K.J. (ed.) Second M.I.T. Conference on Computational Fluid and Solid Mechanics, pp. 1801–1804 (2003)

    Google Scholar 

  24. Sermesant, M., Forest, C., Pennec, X., Delingette, H., Ayache, N.: Deformable biomechanical models: Application to 4D cardiac image analysis. Medical Image Analysis 7(4), 475–488 (2003)

    Article  Google Scholar 

  25. Stergiopulos, N., Westerhof, B.E., Westerhof, N.: Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. 88, H81–H88 (1999)

    Google Scholar 

  26. Veronda, D.R., Westmann, R.A.: Mechanical characterization of skin - finite deformation. Journal of Biomechanics 3, 114–124 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sermesant, M. et al. (2005). Cardiac Function Estimation from MRI Using a Heart Model and Data Assimilation: Advances and Difficulties. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_33

Download citation

  • DOI: https://doi.org/10.1007/11494621_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26161-2

  • Online ISBN: 978-3-540-32081-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics