Skip to main content

Estimating Local Apparent Conductivity with a 2-D Electrophysiological Model of the Heart

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2005)

Abstract

In this article we study the problem of estimating the parameters of a 2-D electrophysiological model of the heart from a set of temporal recordings of extracellular potentials. The chosen model is the reaction-diffusion model on the action potential proposed by Aliev and Panfilov. The strategy consists in building an error criterion based upon a comparison of depolarization times between the model and the measures. This error criterion is minimized in two steps : first a global and then a local adjustment of the model parameters. The feasibility of the approach is demonstrated on real measures on canine hearts, showing also the necessity to introduce anisotropy and probably a third spatial dimension in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliev, R.R., Panfilov, A.V.: A simple two-variables model of cardiac exictation. Chaos, Soliton and Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  2. Ayache, N., Chapelle, D., Clément, F., Coudiére, Y., Delingette, H., Désidéri, J.A., Sermesant, M., Sorine, M., Urquiza, J.: Towards model-based estimation of the cardiac electro-mechanical activity from ECG signals and ultrasound images. In: Katila, T., Magnin, I.E., Clarysse, P., Montagnat, J., Nenonen, J. (eds.) FIMH 2001. LNCS, vol. 2230, pp. 120–127. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Belik, M.E., McCulloch, A.D.: cardiac electrophysiology. In: Ayache, N. (ed.) Computational Models for the Human Body. Handbook of Numerical Analysis. Elsevier, Amsterdam (2004)

    Google Scholar 

  4. Faris, O., Evans, F., Ennis, D., Helm, P., Taylor, J., Chesnik, A., Guttman, M.A., Ozturk, C., McVeigh, E.: A novel technique for cardiac electromechanical mapping with MRI tagging and an epicardial electrode sock. Ann. of Biomed. Engin. 31(4), 430–440 (2003)

    Article  Google Scholar 

  5. FitzHugh, R.A.: Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1, 445–466 (1961)

    Article  Google Scholar 

  6. Geselowitz, D.B., Miller, W.T.: A bidomain model for anisotropic cardiac muscle. Ann. biomed. eng. 3-4, 191–206 (1983)

    Article  Google Scholar 

  7. Keener, J.P.: A geometrical theory for spiral waves in excitable media. SIAM J. App. Math. 46(6), 1039–1056 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Krinski, V., Pumir, A., Efimov, I.: Cardiac muscle models. In: Scott, A. (ed.) Encyclopedia of nonlinear science. Routledge, New York (2004)

    Google Scholar 

  9. Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential - simulations of ionic currents and concentration changes. Circ. Res. 74(6), 1071–1097 (1994)

    Google Scholar 

  10. McCulloch, A., Sung, D., Thomas, M.E., Michailova, A.: Experimental and computational modeling of cardiac elctromechanical coupling. In: Katila, T., Magnin, I.E., Clarysse, P., Montagnat, J., Nenonen, J. (eds.) FIMH 2001. LNCS, vol. 2230, pp. 113–119. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Moreau-Villéger, V., Delingette, H., Sermesant, M., Faris, O., McVeigh, E., Ayache, N.: Global and local parameter estimation of a model of the electrical activity of the heart. Research Report 5269, INRIA (2004)

    Google Scholar 

  12. Noble, D., Rudy, Y.: Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Phil. Trans. R. Soc. Lond. A, 1127–1142 (2001)

    Google Scholar 

  13. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Minimization or Maximization of Functions. In: Numerical Recipes in C, pp. 290–352. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  14. Rudy, Y.: Electrocardiogram and Cardiac Excitation. In: Heart Physiology and Pathophysiology, pp. 133–148. Academic Press, London (2001)

    Chapter  Google Scholar 

  15. Sermesant, M., Faris, O., Evans, F., McVeigh, E., Coudiére, Y., Delingette, H., Ayache, N.: Preliminary validation using in vivo measures of a macroscopic electrical model of the heart. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 230–243. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreau-Villéger, V. et al. (2005). Estimating Local Apparent Conductivity with a 2-D Electrophysiological Model of the Heart. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_26

Download citation

  • DOI: https://doi.org/10.1007/11494621_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26161-2

  • Online ISBN: 978-3-540-32081-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics