Electrophysiology and Tension Development in a Transmural Heterogeneous Model of the Visible Female Left Ventricle

  • Gunnar Seemann
  • Daniel L. Weiß
  • Frank B. Sachse
  • Olaf Dössel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3504)


Electrophysiological heterogeneity within human ventricles is mainly based on differences of ion channel characteristics inside the wall. This influences also properties of cellular tension development.

In this work, knowledge about transmural heterogeneity was transferred to an electro-mechanical heart model composed of a human model describing electrophysiology and of a model for the development of tensions. The heterogeneity was included in the cardiomyocyte model by varying ion channel kinetics and density on basis of measured data. The properties of the heterogeneous electro-mechanical model were demonstrated in a realistic model of left ventricular geometry and fiber orientation using a monodomain approach for describing electrical interaction.

This study indicated the necessity of incorporating regional heterogeneity to model human cardiac electro-mechanics with qualitative good agreement to measured data. The heterogeneity leads to a homogenization of the mechanical process due to increasing time to peak tension from epicardium towards endocardium.


Action Potential Duration Tension Development Transmembrane Voltage Bidomain Model Visible Human Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antzelevitch, C., Yan, G., Shimizu, W., Burashnikov, A.: Electrical heterogeneity, the ECG, and cardiac arrhythmias. In: Zipes, D.P., Jalife, J. (eds.) Cardiac Electrophysiology. From Cell to Bedside, 3rd edn., pp. 222–238. W. B. Saunders Company, Philadelphia (1999)Google Scholar
  2. 2.
    Weiß, D.L., Seemann, G., Dössel, O.: Conditions for equal polarity of R and T wave in heterogeneous human ventricular tissue. In: Proc. BMT, vol. 49-2/1, pp. 364–365 (2004)Google Scholar
  3. 3.
    Ackerman, M.J.: Viewpoint: The Visible Human Project. J. Biocommunication 18, 14 (1991)Google Scholar
  4. 4.
    Sachse, F.B., Werner, C.D., Stenroos, M.H., Schulte, R.F., Zerfass, P., Dössel, O.: Modeling the anatomy of the human heart using the cryosection images of the Visible Female dataset. In: Proc. Third Users Conference of the National Library of Medicine’s Visible Human Project, Bethesda, USA (2000)Google Scholar
  5. 5.
    Sachse, F.B., Frech, R., Werner, C.D., Dössel, O.: A model based approach to assignment of myocardial fibre orientation. In: Proc. Computers in Cardiology, Hannover, vol. 26, pp. 145–148 (1999)Google Scholar
  6. 6.
    Streeter, D.D.: Gross morphology and fiber geometry of the heart. In: Bethesda, B. (ed.) Handbook of Physiology: The Cardiovascular System, vol. I, pp. 61–112. American Physiology Society, Hyattsville (1979)Google Scholar
  7. 7.
    Priebe, L., Beuckelmann, D.J.: Simulation study of cellular electric properties in heart failure. Circ. Res. 82, 1206–1223 (1998)Google Scholar
  8. 8.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 177, 500–544 (1952)Google Scholar
  9. 9.
    Seemann, G., Sachse, F.B., Weiß, D.L., Dössel, O.: Quantitative reconstruction of cardiac electromechanics in human myocardium: Regional heterogeneity. J. Cardiovasc. Electrophysiol. 14, S219–S228 (2003)CrossRefGoogle Scholar
  10. 10.
    Glänzel, K., Sachse, F.B., Seemann, G., Riedel, C., Dössel, O.: Modeling force development in the sarcomere in consideration of electromechanical coupling. Biomedizinische Technik 47-1/2, 774–777 (2002)CrossRefGoogle Scholar
  11. 11.
    Sachse, F.B., Glänzel, K., Seemann, G.: Modeling of protein interactions involved in cardiac tension development. Int. J. Bifurc. Chaos 13, 3561–3578 (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Sachse, F.B., Seemann, G., Chaisaowong, K., Weiß, D.: Quantitative reconstruction of cardiac electromechanics in human myocardium: Assembly of electrophysiological and tension generation models. J. Cardiovasc. Electrophysiol. 14, S210–S218 (2003)CrossRefGoogle Scholar
  13. 13.
    Cordeiro, J.M., Greene, L., Heilmann, C., Antzelevitch, D., Antzelevitch, C.: Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle. Am. J. Physiol. 286, H1471–H1479 (2003)Google Scholar
  14. 14.
    Wallis, H.L., Sears, C., Bryant, S.: Regional differences in excitation-contraction coupling in the guinea-pig left ventricle. J. Physiol. 544P., 53P–54P (2002)Google Scholar
  15. 15.
    LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269, H571–H582 (1995)Google Scholar
  16. 16.
    Henriquez, C.S., Muzikant, A.L., Smoak, C.K.: Anisotropy, fiber curvature and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model. J. Cardiovasc. Electrophysiol. 7, 424–444 (1996)CrossRefGoogle Scholar
  17. 17.
    The Message Passing Interface (MPI) standard,

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gunnar Seemann
    • 1
  • Daniel L. Weiß
    • 1
  • Frank B. Sachse
    • 2
  • Olaf Dössel
    • 1
  1. 1.Institut für Biomedizinische TechnikUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Nora Eccles Harrison Cardiovascular Research and Training InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations