Skip to main content

Virtual Ventricular Wall: Effects of Pathophysiology and Pharmacology on Transmural Propagation

  • Conference paper
  • 951 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3504))

Abstract

Effects of pathophysiological conditions and pharmacological intervention on transmural propagation are computed for the virtual ventricular wall. ST depression during sub-endocardial ischaemia and unidirectional functional block in the vulnerable window during Class III drug action are explained by changes induced in the transmural dispersion of action potential duration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryant, S.M., Wan, X., Shipsey, S.J., Hart, G.: Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. Cardiovasc. Res. 40, 322–331 (1998)

    Article  Google Scholar 

  2. Han, J., Moe, G.K.: Nonuniform recovery of excitability in ventricular muscle. Circ. Res. 14, 44–60 (1964)

    Google Scholar 

  3. Burton, F.L., Cobbe, S.M.: Dispersion of ventricular repolarization and refractory period. Cardiovasc. Res. 50, 10–23 (2001)

    Article  Google Scholar 

  4. Clayton, R.H., Holden, A.V.: Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration. Prog. Biophys. Mol. Biol. 85, 473–499 (2004)

    Article  Google Scholar 

  5. Viswanathan, P.C., Rudy, Y.: Cellular arrhythmogenic effects of congenital and acquired long-QT syndrome in the heterogeneous myocardium. Circulation 101, 1192–1198 (2000)

    Google Scholar 

  6. Akar, F.G., Yan, G.-X., Antzelevitch, C., Rosenbaum, D.S.: Unique topographical distribution of M cells underlies re-entrant mechanism of Torsade de Pointes in the Long-QT syndrome. Circulation 105, 1247–1253 (2002)

    Article  Google Scholar 

  7. Antzelevitch, C., Shimizu, W., Yan, G.X., Sicouri, S., Weissenburger, J., Nesterenko, V.V., Burashnikov, A., Di Diego, J., Saffitz, J., Thomas, G.P.: The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J. Cardiovasc. Electrophysiol. 10, 1124–1152 (1999)

    Article  Google Scholar 

  8. Antzelevitch, C., Yan, G.X., Shimizu, W.: Transmural dispersion of repolarization and arrhyth-mogenicity: the Brugada syndrome versus the long QT syndrome. J. Electrocardiol. 32, 158–165 (1999)

    Article  Google Scholar 

  9. Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms – a model study. Circ. Res. 90, 889–896 (2002)

    Article  Google Scholar 

  10. Kleber, A.G.: ST-segment elevation in the electrocardiogram: a sign of myocardial ischaemia. Cardiovasc. Res. 45, 111–118 (2000)

    Article  Google Scholar 

  11. Li, D., Li, C.Y., Yong, A.C., Kilpatrick, D.: Source of electrocardiographic ST changes in subendocardial ischemia. Circ. Res. 82, 957–970 (1998)

    Google Scholar 

  12. Horacek, B.M., Wagner, G.S.: Electrocardiographic ST-segment changes during acute myocardial ischemia. Card. Electrophysiol. Rev. 6, 196–203 (2002)

    Article  Google Scholar 

  13. Huikuri, H.V., Castellanos, A., Myerburg, R.J.: Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001)

    Article  Google Scholar 

  14. Sicouri, S., Moro, S., Litovsky, S., Elizari, M.V., Antzelevitch, C.: Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J. Cardiovasc. Electrophysiol. 8, 1269–1279 (1997)

    Article  Google Scholar 

  15. Drouin, E., Lande, G., Charpentier, F.: Amiodarone reduces transmural heterogeneity of repolarization in the human heart. J. Am. Coll. Cardiol. 32, 1063–1067 (1998)

    Article  Google Scholar 

  16. Clayton, R.H., Holden, A.V.: Computational framework for simulating the mechanisms and ECG of re-entrant ventricular fibrillation. Physiol. Meas. 23, 707–726 (2002)

    Article  Google Scholar 

  17. Kohl, P., Noble, D., Winslow, R.L., Hunter, P.J.: Computational modelling of biological systems: tools and visions. Philos. Trans. Roy. Soc. A 358, 579–610 (2000)

    Article  MATH  Google Scholar 

  18. Aslanidi, O.V., Bailey, A., Biktashev, V.N., Clayton, R.H., Holden, A.V.: Enhanced self-termination of re-entrant arrhythmias as a pharmacological strategy for antiarrhythmic action. Chaos 12, 843–851 (2002)

    Article  Google Scholar 

  19. Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. I. Simula-tions of ionic currents and concentration changes. Circ. Res. 74, 1071–1096 (1994)

    Google Scholar 

  20. Shaw, R.M., Rudy, Y.: Electrophysiologic effects of acute myocardial ischaemia: a theoretical study of altered cell excitability and action potential duration. Cardiovasc. Res. 35, 256–272 (1997)

    Article  Google Scholar 

  21. ten Tusscher, K.H., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H1573–H1589 (2004)

    Article  Google Scholar 

  22. Hyatt, C.J., Mironov, S.F., Wellner, M., Berenfeld, O., Popp, A.K., Weitz, D.A., Jalife, J., Pertsov, A.M.: Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys. J. 85, 2673–2683 (2003)

    Article  Google Scholar 

  23. Clayton, R.H., Holden, A.V.: Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study. Phys. Med. Biol. 48, 95–111 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aslanidi, O.V., Lambert, J.L., Srinivasan, N.T., Holden, A.V. (2005). Virtual Ventricular Wall: Effects of Pathophysiology and Pharmacology on Transmural Propagation. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_17

Download citation

  • DOI: https://doi.org/10.1007/11494621_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26161-2

  • Online ISBN: 978-3-540-32081-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics