Advertisement

Multi-surface Cardiac Modelling, Segmentation, and Tracking

  • Jens von Berg
  • Cristian Lorenz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3504)

Abstract

Multi–slice computed tomography image series are a valuable source of information to extract shape and motion parameters of the heart. We present a method how to segment and label all main chambers (both ventricles and atria) and connected vessels (arteries and main vein trunks) from such images and to track their movement over the cardiac cycle. A framework is presented to construct a multi–surface triangular model enclosing all blood–filled cavities and the main myocardium as well as to adapt this model to unseen images, and to propagate it from phase to phase. While model construction still requires a reasonable amount of user interaction, adaptation is mostly automated, and propagation works fully automatically. The adaptation method by deformable surface models requires a set of landmarks to be manually located for one of the cardiac phases for model initialisation.

Keywords

Training Image Surface Point Surface Mesh Initial Mesh Active Appearance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz, C., von Berg, J.: Towards a comprehensive geometric model of the heart. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds.) FIMH 2005. LNCS, vol. 3504, pp. 102–112. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple–object three–dimensional statistical shape models: Application to cardiac modeling. IEEE Trans. Med. Imag. 21, 1151–1166 (2002)CrossRefGoogle Scholar
  3. 3.
    Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Mohiaddin, R., Rückert, D.: Altas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 642–650. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Kaus, M.R., von Berg, J., Weese, J., Niessen, W., Pekar, V.: Automated segmentation of the left ventricle in cardiac MRI. Med. Img. Anal. 8, 245–254 (2004)CrossRefGoogle Scholar
  5. 5.
    Lötjönen, J., Kivistö, S., Koikkalainen, J., Smutek, D., Lauerma, K.: Statistical shape model of atria, ventricles and epicardium from short– and long–axis MR images. Med. Img. Anal. 8, 371–386 (2004)CrossRefGoogle Scholar
  6. 6.
    Pilgram, R., Fritscher, K.D., Schubert, R.: Modeling of the geometric variation and analysis of the right atrium and right ventricle motion of the human heart using PCA. In: Proc. of CARS, pp. 1108–1113. Elsevier, Amsterdam (2004)Google Scholar
  7. 7.
    Chen, T., Metaxas, D., Axel, L.: 3D cardiac anatomy reconstruction using high resolution CT data. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 411–418. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Frangi, A.F., Niessen, W.J., Viergever, M.A.: Three–dimensional modeling for functional analysis of cardiac images: A review. IEEE TMI 20, 2–25 (2001)Google Scholar
  9. 9.
    Leliveldt, B.P.F., van der Geest, R.J., Rezaee, M.R., Bosch, J.G., Reiber, J.H.C.: Anatomical model matching with fuzzy implicit surfaces for segmentation of thoracic volume scans. IEEE Trans. Med. Imag. 18, 218–230 (1999)CrossRefGoogle Scholar
  10. 10.
    Weese, J., Kaus, M., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3D medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 380–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Golub, G., van Loan, C.: Matrix Computation, 3rd edn. John’s Hopkins University Press, Baltimore (1996)Google Scholar
  12. 12.
    Gill, P., Murray, W., Wright, M.: Practical Optimization. Academ. Press, New York (1981)MATHGoogle Scholar
  13. 13.
    Wierzbicki, M., Drangova, M., Guiraudon, G., Peters, T.: Validation of dynamic heart models obtained using non–linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries. Med. Img. Anal. 8, 387–401 (2004)CrossRefGoogle Scholar
  14. 14.
    Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., van der Geest, R., Reiber, J.H.C., Sonka, M.: 3–D active appearance models: Segmentation of cardiac MR and ultrasound images. IEEE Trans. Med. Imag. 21, 1167–1178 (2002)CrossRefGoogle Scholar
  15. 15.
    Timinger, H., Pekar, V., von Berg, J., Dietmeyer, K., Kaus, M.: Integration of interactive corrections to model–based segmentation algorithms. In: Proc. Bildverarbeitung für die Medizin, pp. 11–15. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jens von Berg
    • 1
  • Cristian Lorenz
    • 1
  1. 1.Philips Research LaboratoriesSector Technical SystemsHamburgGermany

Personalised recommendations