Combining Arc-Consistency and Dual Lagrangean Relaxation for Filtering CSPs

  • Mohand Ou Idir Khemmoudj
  • Hachemi Bennaceur
  • Anass Nagih
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3524)


This paper presents a CSPs filtering method combining arc-consistency and dual Lagrangean relaxation techniques. First, we model the constraint satisfaction problem as a 0/1 linear integer program (IP); then, the consistency of a value is defined as an optimization problem on which a dual Lagrangean relaxation is defined. While solving the dual Lagrangean relaxation, values inconsistencies may be detected (dual Lagrangean inconsistent values); the constraint propagation of this inconsistency can be performed by arc-consistency. After having made the CSP arc-consistent, the process iteratively selects values of variables which may be dual Lagrangean inconsistent. Computational experiments performed over randomly generated problems show the advantages of the hybrid filtering technique combining arc-consistency and dual Lagrangean relaxation.


Arc-Consistency Lagrangean Relaxation Subgradient Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Affane, M.S., Bennaceur, H.: A Weighted Arc Consistency Technique for MAX-CSP. In: ECAI, pp. 209–213 (1998)Google Scholar
  2. 2.
    Benoist, T., Gaudin, E., Rottembourg, B.: Constraint Programming Contribution to Benders Decomposition: A Case Study. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 603–617. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bessière, C., Cordier, M.: Arc-consistency and Arc-consistency Again. Artificial Intelligence 65(1), 179–190 (1994)CrossRefGoogle Scholar
  4. 4.
    Camerini, P.M., Fratta, L., Maffioli, F.: On improving relaxation methods by modified gradient techniques. Mathematical programming Study 3, 26–34 (1975)MathSciNetGoogle Scholar
  5. 5.
    Darby-Dowman, K., Little, J.: Properties of some combinatorial optimization problems and their effect on the performance of integer programming and constraint logic programming. INFORMS Journal on Computing 10(3), 276–286 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Darby-Dowman, K., Little, J., Mitra, G., Zaffalon, M.: Constraint Logic Programming and Integer Programming Approaches and their Collaboration in Solving an Assignment Scheduling Problem. Constraints, An International Journal 1(3), 245–264 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dechter, R., Meiri, I.: Experimental evaluation of preprocessing algorithms for constraint satisfaction problems. Artificial Intelligence 68, 211–241 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Focacci, F., Lodi, A., Milano, M.: Cost-Based Domain Filtering. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Focacci, F., Lodi, A., Milano, M.: Optimization-Oriented Global Constraints. Constraints 7(3-4), 351–365 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Frost, D., Dechter, R.: In search of the best constraint satisfaction search. In: Proceedings AAAI 1994, Seatlle WA, pp. 301–306 (1994)Google Scholar
  11. 11.
    Geoffrion, A.M.: The Lagrangean Relaxation for Integer Programming. Mathematical Programming 2, 82–114 (1974)Google Scholar
  12. 12.
    Hooker, J.N., Osorio, M.A.: Mixed Logical/Linear Programming. Discrete Applied Mathematics 96-97(1-3), 395–442 (1999)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hooker, J.N., Ottosson, G., Thornsteinsson, E.S., Kim, H.-J.: A scheme for unifying optimization and constraint satisfaction methods. Knowledge Engineering Review 15, 11–30 (2000)CrossRefGoogle Scholar
  14. 14.
    Koster, A.M.C.: Frequency Assignment Problem, Models and Algorithms. Proefschrift Universiteit Maastricht. (1999)Google Scholar
  15. 15.
    Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)zbMATHCrossRefGoogle Scholar
  16. 16.
    Maculan, N., Passini, M.M., Brito, J.A.M., Loiseau, I.: Column-Generation in Integer Linear Programming. RAIRO - Operations Research 37, 67–83 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Milano, M., Ottosson, G., Refalo, P., Erlendur, S.: The Benefits of Global Constraints for the Integration of Constraint Programming and Integer Programming. In: Thorsteinsson, E.S. (ed.) Proceedings of the Seventeenth National Conference on Artificial Intelligence. AAAI, Menlo Park (2000)Google Scholar
  18. 18.
    Mohr, R., Henderson, T.: Arc and Path consistency revisited. Artificial Intelligence 28, 225–233 (1986)CrossRefGoogle Scholar
  19. 19.
    Sellmann, M.: Theoretical Foundations of CP-based Lagrangian Relaxation. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 634–647. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Zhao, X., Luh, P.B.: New bundle methods for solving Lagrangian relaxation dual problems. Journal of Optimization Theory and Applications 113(2), 373–397 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mohand Ou Idir Khemmoudj
    • 1
  • Hachemi Bennaceur
    • 1
  • Anass Nagih
    • 1
  1. 1.LIPN-CNRS UMRVilletaneuseFrance

Personalised recommendations