Improving the Cooperation Between the Master Problem and the Subproblem in Constraint Programming Based Column Generation

  • Bernard Gendron
  • Hocine Lebbah
  • Gilles Pesant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3524)


Constraint programming (CP) based column generation uses CP to solve the pricing subproblem. We consider a set partitioning formulation with a huge number of variables, each of which can be generated by solving a CP subproblem. We propose two customized search strategies to solve the CP subproblem, which aim to improve the coordination between the master problem and the subproblem. Specifically, these two strategies attempt to generate more promising columns for the master problem in order to counter the effect of slow convergence and the difficulty of reaching integer solutions. The first strategy uses the dual variables to direct the search towards columns that drive the relaxed master problem faster to optimality. The second strategy exploits the structure of the constraints in the master problem to generate columns that help to reach integer solutions more quickly. We use a physician scheduling problem to test the strategies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations Research 46, 316–329 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beaulieu, H., Ferland, J.A., Gendron, B., Michelon, P.: A Mathematical Programming Approach to Scheduling Physicians in the Emergency Room. Health Care Management Science 3, 193–200 (2000)CrossRefGoogle Scholar
  3. 3.
    Bourdais, S., Galinier, P., Pesant, G.: HIBISCUS: A Constraint Programming Application to Staff Scheduling in Health Care. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 153–167. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Dantzig, G.B., Wolfe, P.: Decomposition Principle for Linear Programs. Operations Research 8, 101–111 (1960)zbMATHCrossRefGoogle Scholar
  5. 5.
    Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time Constrained Routing and Scheduling. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Research and Management Science: Network Routing, vol. 8, pp. 35–139. North-Holland, Amsterdam (1995)Google Scholar
  6. 6.
    Fahle, T., Junker, U., Karish, S.E., Kohl, N., Vaaben, N., Sellmann, M.: Constraint Programming Based Column Generation for Crew Assignment. Journal of Heuristics 8, 59–81 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Fahle, T., Sellmann, M.: Cost Based Filtering for the Constrained Knapsack Problem. Annals of Operations Research 115, 73–93 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gilmore, P.C., Gomory, R.E.: A Linear Programming Approach to the Cutting Stock Problem. Operations Research 9, 849–859 (1961)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gilmore, P.C., Gomory, R.E.: A Linear Programming Approach to the Cutting Stock Problem: Part II. Operations Research 11, 863–888 (1963)zbMATHCrossRefGoogle Scholar
  10. 10.
    Junker, U., Karish, S.E., Kohl, N., Vaaben, N., Fahle, T., Sellmann, M.: A Framework for Constraint Programming Based Column Generation. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 261–274. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Lübbecke, M.E., Desrosiers, J.: Selected Topics in Column Generation. Technical Report G-2002-64, GERAD, Montréal (2002)Google Scholar
  12. 12.
    Pesant, G.: A Filtering Algorithm for the Stretch Constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 183–195. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Régin, J.C.: Generalized Arc Consistency for Global Cardinality Constraints. In: Proceedings of AAAI 1996, pp. 209–215. AAAI Press/MIT Press (1996)Google Scholar
  14. 14.
    Rousseau, L.-M., Gendreau, M., Feillet, D.: Interior Point Stabilization for Column Generation. Publication CRT-2003-39, Centre de recherche sur les transports, Université de Montréal (2003)Google Scholar
  15. 15.
    Rousseau, L.-M., Gendreau, M., Pesant, G., Focacci, F.: Solving VRPTWs with Constraint Programming Based Column Generation. Annals of Operations Research 130, 199–216 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Savelsbergh, M.W.P.: A Branch-and-Price Algorithm for the Generalized Assignment Problem. Operations Research 45, 831–841 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sellmann, M., Zervoudakis, K., Stamatopoulos, P., Fahle, T.: Crew Assignment via Constraint Programming: Integrating Column Generation and Heuristic Tree Search. Annals of Operations Research 115, 207–225 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Vanderbeck, F.: On Dantzig-Wolfe Decomposition in Integer Programming and Ways to Perform Branching in a Branch-and-Price Algorithm. Operations Research 48, 111–128Google Scholar
  19. 19.
    Vanderbeck, F., Wolsey, L.A.: An Exact Algorithm for IP Column Generation. Operations Research Letters 19, 151–159Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bernard Gendron
    • 1
    • 2
  • Hocine Lebbah
    • 2
    • 3
  • Gilles Pesant
    • 2
    • 3
  1. 1.Département d’informatique, et de recherche opérationnelleUniversité de MontréalMontreal, Quebec
  2. 2.Centre de recherche sur les transportsUniversité de MontréalMontreal, Quebec
  3. 3.Département de génie informatiqueÉcole Polytechnique de MontréalMontréal, Québec

Personalised recommendations