Skip to main content

A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers

  • Conference paper
DNA Computing (DNA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3384))

Included in the following conference series:

Abstract

We use molecular computation to solve pattern classification problems. DNA molecules encode data items and the DNA library represents the empirical probability distribution of data. Molecular bio-lab operations are used to compute conditional probabilities that decide the class label. This probabilistic computational model distinguishes itself from the conventional DNA computing models in that the entire molecular population constitutes the solution to the problem as an ensemble. One important issue in this approach is how to automatically learn the probability distribution of the DNA-based classifier from observed data. Here we develop a molecular evolutionary algorithm inspired by directed evolution, and derive its molecular learning rule from Bayesian decision theory. We investigate through simulation the convergence behaviors of the molecular Bayesian evolutionary algorithm on a concrete problem from statistical pattern classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeck, T., Kok, J.N., Rozenberg, G.: Evolutionary computation as a paradigm for DNA-based computing. In: Landweber, L.F., Winfree, E. (eds.) Evolution as Computation, pp. 15–40. Springer, Heidelberg (2002)

    Google Scholar 

  2. Baum, E.B.: Building an associative memory vastly larger than the brain. Science 268, 583–585 (1995)

    Article  Google Scholar 

  3. Chen, J., Deaton, R., Wang, Y.-Z.: A DNA-based memory with in vitro learning and associative recall. In: Proc. 9th Annual Meeting on DNA-Based Computers, pp. 127–136 (2003)

    Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  5. Famulok, M., Verma, S.: In vivo-applied functional RNAs as tools in proteomics and genomics research. Trends in Biotechnology 20(11), 462–466 (2002)

    Article  Google Scholar 

  6. Garzon, M., Bobba, K., Neel, A.: Efficiency and reliability of semantic retrieval in DNA-based memories. In: Proc. 9th Annual Meeting on DNA-Based Computers, pp. 137–149 (2003)

    Google Scholar 

  7. Landweber, L.F., Pokrovskaya, I.D.: Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: The spandrels of RNA evolution. Proc. Natl. Acad. Sci. USA 96, 173–178 (1999)

    Article  Google Scholar 

  8. Lim, H.-W., Yun, J.-E., Jang, H.-M., Chai, Y.-G., Yoo, S.-I., Zhang, B.-T.: Version space learning with DNA molecules. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 143–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Reif, J., LaBean, T.: Computationally inspired biotechnology: Improved DNA synthesis and associative search using error-correcting codes and vector quantization. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 145–172. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: A DNA-based in vitro genetic program. Journal of Biological Physics 28, 493–498 (2002)

    Article  Google Scholar 

  11. Shin, S.-Y., Lee, I.-H., Kim, D., Zhang, B.-T.: Multi-objective evolutionary optimization of DNA sequences for reliable DNA computing. IEEE Transactions on Evolutionary Computation (2004) (to appear)

    Google Scholar 

  12. Wilson, D.S., Szostak, J.W.: In vitro selection of functional nucleic acids. Ann. Rev. Biochem. 68, 611–647 (1999)

    Article  Google Scholar 

  13. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Logical error correction for algorithmic self-assembly. In: Talk at The 9th Annual Meeting on DNA-Based Computers, Madison, WI (June 2003)

    Google Scholar 

  14. Wood, D.: DNA starts to learn Poker. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 92–103. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Wright, M.C., Joyce, G.F.: Continuous in vitro evolution of catalytic function. Science 276, 614–617 (1997)

    Article  Google Scholar 

  16. Yokobayashi, R., Weiss, R., Arnold, F.H.: Directed evolution of a genetic circuit. Proc. Natl. Acad. Sci. USA 99(26), 16587–16591 (2002)

    Article  Google Scholar 

  17. Zhang, B.-T.: A unified Bayesian framework for evolutionary learning and optimization. Advances in Evolutionary Computation, ch. 15, pp. 393–412. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, BT., Jang, HY. (2005). A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers. In: Ferretti, C., Mauri, G., Zandron, C. (eds) DNA Computing. DNA 2004. Lecture Notes in Computer Science, vol 3384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11493785_39

Download citation

  • DOI: https://doi.org/10.1007/11493785_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26174-2

  • Online ISBN: 978-3-540-31844-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics