Skip to main content

Preventing Undesirable Bonds Between DNA Codewords

  • Conference paper
DNA Computing (DNA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3384))

Included in the following conference series:

Abstract

The input data for DNA computing must be encoded into the form of single or double DNA strands. As complementary parts of single strands can bind together forming a double-stranded DNA sequence, one has to impose restrictions on these sets of DNA words (=languages) to prevent them from interacting in undesirable ways. We recall a list of known properties of DNA languages which are free of certain types of undesirable bonds. Then we introduce a general framework in which we can characterize each of these properties by a solution of a uniform formal language inequation. This characterization allows us among others to construct (i) a uniform algorithm deciding in polynomial time whether a given DNA language possesses any of the studied properties, and (ii) in many cases also an algorithm deciding whether a given DNA language is maximal with respect to the desired property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arita, M., Kobayashi, S.: DNA sequence design using templates. New Generation Computing 20, 263–277 (2002)

    Article  MATH  Google Scholar 

  2. Domaratzki, M.: Deletion Along Trajectories. Tech. Report 464-2003, School of Computing, Queen’s University (2003) (submitted for publication)

    Google Scholar 

  3. Head, T.: Relativised code concepts and multi-tube DNA dictionaries. In: Calude, C.S., Păun, G. (eds.) Finite Versus Infinite: Contributions to an Eternal Dilemma, pp. 175–186. Springer, London (2000)

    Google Scholar 

  4. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. theoretical Computer Science 290/3, 1557–1579 (2002)

    MathSciNet  Google Scholar 

  5. Jonoska, N., Kephart, D., Mahalingam, K.: Generating DNA code words. Congressus Numerantium 156, 99–110 (2002)

    MathSciNet  Google Scholar 

  6. Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 58–68. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Kari, L.: On insertion and deletion in formal languages, PhD thesis, University of Turku, Finland (1991)

    Google Scholar 

  8. Kari, L., Kitto, R., Thierrin, G.: Codes, involutions and DNA encoding. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 376–393. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Kari, L., Konstantinidis, S.: Language equations, maximality and error detection (submitted for publication)

    Google Scholar 

  10. Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-free DNA languages. Acta Informatica 40, 119–157 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kari, L., Konstantinidis, S., Sosík, P.: On Properties of Bond-Free DNA Languages. Dept. of Computer Science Tech. Report No. 609, Univ. of Western Ontario (2003) (submitted for publication)

    Google Scholar 

  12. Kari, L., Sosík, P.: Language deletion on trajectories. Dept. of Computer Science Technical Report No. 606, University of Western Ontario, London (2003)

    Google Scholar 

  13. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA words design. J. Computational Biology 8(3) (2001)

    Google Scholar 

  14. Mauri, G., Ferretti, C.: Word Design for Molecular Computing: A Survey. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 37–46. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic constraints, TUCS technical report No. 41, Turku Centre for Computer Science, 1996, and Theoretical Computer Science 197, 1–56 (1998)

    MATH  MathSciNet  Google Scholar 

  16. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing Paradigms. Springer, Berlin (1998)

    MATH  Google Scholar 

  17. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kari, L., Konstantinidis, S., Sosík, P. (2005). Preventing Undesirable Bonds Between DNA Codewords. In: Ferretti, C., Mauri, G., Zandron, C. (eds) DNA Computing. DNA 2004. Lecture Notes in Computer Science, vol 3384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11493785_16

Download citation

  • DOI: https://doi.org/10.1007/11493785_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26174-2

  • Online ISBN: 978-3-540-31844-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics