Generating Tailored Textual Summaries from Ontologies

  • Kalina Bontcheva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3532)


This paper presents the ONTOSUM system which uses Natural Language Generation (NLG) techniques to produce textual summaries from Semantic Web ontologies. The main contribution of this work is in showing how existing NLG tools can be adapted to Semantic Web ontologies, in a way which minimises the customisation effort while offering more diverse output than template-based ontology verbalisers. A novel dimension of this work is the focus on tailoring the summary formatting and length according to a device profile (e.g., mobile phone, Web browser). Another innovative idea is the use of ontology mapping for summary generation from different ontologies.


Lexical Entry Ontology Mapping Natural Language Generation Text Plan Property Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aguado, G., Bañón, A., Bateman, J.A., Bernardos, S., Fernández, M., Gómez-Pérez, A., Nieto, E., Olalla, A., Plaza, R., Sánchez, A.: ONTOGENERATION: Reusing domain and linguistic ontologies for Spanish text generation. In: Workshop on Applications of Ontologies and Problem Solving Methods, ECAI 1998 (1998)Google Scholar
  2. 2.
    Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving GATE to Meet New Challenges in Language Engineering. Natural Language Engineering 10(3/4), 349–373 (2004)CrossRefGoogle Scholar
  3. 3.
    Bontcheva, K., Wilks, Y.: Automatic Report Generation from Ontologies: the MIAKT approach. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 324–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    de Bruijn, J., Martin-Recuerda, F., Manov, D., Ehrig, M.: State-of-the-art survey on Ontology Merging and Aligning v1. Technical report, SEKT project deliverable D4.2.1 (2004),
  5. 5.
    McKeown, K.R.: Text Generation: Using Discourse Strategies and Focus Constraints to Generate Natural Language Text. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  6. 6.
    Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Riders Publishing, Indianapolis (2000)Google Scholar
  7. 7.
    Paris, C.L.: Tailoring object descriptions to the user’s level of expertise. Computational Linguistics 14(3), 64–78 (1988) Special Issue on User ModellingGoogle Scholar
  8. 8.
    Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  9. 9.
    Reiter, E.: Pipelines and size constraints. Computational Linguistics 26, 251–259 (2000)CrossRefGoogle Scholar
  10. 10.
    Sowa, J.F. (ed.): Principles of Semantic Networks: Explorations in the Representation of Knowledge. Morgan Kaufmann, California (1991)zbMATHGoogle Scholar
  11. 11.
    Wilcock, G.: Talking OWLs: Towards an Ontology Verbalizer. In: Human Language Technology for the Semantic Web and Web Services, ISWC 2003, Sanibel Island, Florida, pp. 109–112 (2003)Google Scholar
  12. 12.
    Wilcock, G., Jokinen, K.: Generating Responses and Explanations from RDF/XML and DAML+OIL. In: Knowledge and Reasoning in Practical Dialogue Systems, IJCAI 2003, Acapulco, pp. 58–63 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kalina Bontcheva
    • 1
  1. 1.Department of Computer ScienceUniversity of SheffieldSheffieldUK

Personalised recommendations