Advertisement

Dually Structured Concepts in the Semantic Web: Answer Set Programming Approach

  • Patryk Burek
  • Rafał Graboś
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3532)

Abstract

There is an ongoing discussion whether reasoning in the Semantic Web should be monotonic or not. However, it seems that the problem concerns not only reasoning over knowledge but knowledge itself, where apart from nondefeasible knowledge the defeasible knowledge can be distinguished. In the current paper we rely on the Dual Theory of Concepts, according to which concepts are dually structured into defeasible and nondefeasible parts. We develop a metaontology for representing both types of a concept’s structure and apply it for annotating OWL axioms. The translation of annotated OWL axioms into a logic program under answer set semantics is provided. Hence the answer set solver Smodels may be used as reasoner for annotated ontologies, handling properly the distinction between monotonic and nonmonotonic reasoning.

Keywords

Ontology Knowledge Representation Reasoning in the Semantic Web Semantic Web Inference Schemes 

References

  1. 1.
    Alsac, G., Baral, C.: Reasoning in description logics using declarative logic programming. Abstract, ASU Technical Report (2001-2002)Google Scholar
  2. 2.
    Baader, F., Hollunder, B.: Embedding Defaults into Terminological Representation Systems. Automated Reasoning 14, 149–180 (1995)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Baader, F., et al.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Bassiliades, N., et al.: A Defeasible Logic Reasoner for the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 49–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bertino, E., et al.: Local Closed-World Assumptions for reasoning about Semantic Webdata. In: Proc. of AGP 2003 APPIA-GULP-PRODE (2003)Google Scholar
  6. 6.
    Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation system. Cognitive Science 9(2), 171–216 (1985)CrossRefGoogle Scholar
  7. 7.
    Brachman, R.J.: ‘I Lied about the Trees’ or, Defaults and Definifons in Knowledge Representation. AI Magazine 6(3), 80–93 (1985)Google Scholar
  8. 8.
    Brewka, G.: Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar
  9. 9.
    Brewka, G.: Logic Programming with Ordered Disjunction. In: Proc. of AAAI 2002, pp. 100–105 (2002)Google Scholar
  10. 10.
    Dionini, F.M., et al.: AL-log: integrating datalog and description logics. Journal of Intelligent and Cooperative Information Systems 10, 227–252 (1998)CrossRefGoogle Scholar
  11. 11.
    Eiter, T., et al.: The DLV system for knowledge representation and reasoning: Infsys Research Report, Austria (2002)Google Scholar
  12. 12.
    Eiter, T., et al.: Combining Answer Set Programming with Description Logics for the Semantic Web. In: Proc. of KR 2004, Canada, pp. 141–151 (2004)Google Scholar
  13. 13.
    Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation - A-Prolog perspective. AI 138, 3–38 (2002)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Grofof, B.N., et al.: Description Logic Programs: Combining Logic Programs with Description Logic. In: Porc. of WWW 2003, Hungary, pp. 48–57 (2003)Google Scholar
  15. 15.
    Helbig, H., Gnörlich, C.: Multilayered Extended Semantic Networks as a Language for Meaning Representation in NLP Systems. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 17–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Heymans, S., Vermeir, D.: A Defeasible Ontology Language. In: Proc. of ODBASE 2002, USA, pp. 1033–1046 (2002)Google Scholar
  17. 17.
    Heymans, S., Vermir, D.: Integrating ontology languages and answer set programming. In: Proc. of DEXA 2003, Czech Republic, p. 584 (2003)Google Scholar
  18. 18.
    Levy, A., Rousset, M.: CARIN: A representation language combining Horn rules and description logics. In: Proc. of ECAI 1996, Hungary, pp. 323–327 (1996)Google Scholar
  19. 19.
    Lifschitz, V.: Answer set programming and plan generation. AI 138, 39–54 (2002)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Margolis, E., Laurence, S.: Concepts and Cognitive Science. In: Margolis, E., Laurence, S. (eds.) Concepts: Core Readings. Bradford Books/MIT Press, Cambridge (1999)Google Scholar
  21. 21.
    Margolis, E., Laurence, S.: Concepts. In: Warfield, T., Stich, S. (eds.) The Blackwell Guide to the Philosophy of Mind. Blackwell, Malden (2003)Google Scholar
  22. 22.
    Niemelä, I., Simons, P.: Smodels-an implementation of the stable model and well-founded semantics for normal logic programs. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 420–429. Springer, Heidelberg (1997)Google Scholar
  23. 23.
    Osherson, D.N., Smith, E.E.: On the adequacy of prototype theory as a theory of concepts. Cognition 9(1), 35–58 (1981)CrossRefGoogle Scholar
  24. 24.
    Quantz, J.J., Ryan, M.: Preferential Default Description Logics. KIT-Report 110. Technische Universitat Berlin (1993)Google Scholar
  25. 25.
    Patel-Schneider, P.F., et al.: Web ontology language (owl) abstract syntax and semantics. W3C Recommendation (2004)Google Scholar
  26. 26.
    Reiter, R.: On reasoning by default. In: Proc. of Theoretical Issues in Natural Language Processing USA, pp. 210–218 (1978)Google Scholar
  27. 27.
    Rosati, R.: Towards expressive KR systems integrating datalog and description logics: Preliminary report. In: Proc. of DL 1999, Sweden, pp. 160–164 (1999)Google Scholar
  28. 28.
    Rosch, E., Mervis, C.: Family Resemblances: Studies in the Internal Structure of Categories. Cognitive Psychology 7, 573–603 (1975)CrossRefGoogle Scholar
  29. 29.
    Swift, T.: Deduction in ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 275–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Wittgenstein, L.: Philosophical Investigations. Blackwell, Oxford (1953)Google Scholar
  31. 31.
    Zhang, J.: Representation of Health Concepts: Cognitive Perspective. Journal of Biomedical Informatics 35, 17–24 (2002)zbMATHCrossRefGoogle Scholar
  32. 32.
    Zadeh, L.: Fuzzy Sets. Inform. control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Patryk Burek
    • 1
  • Rafał Graboś
    • 1
  1. 1.Department of Computer ScienceUniversity of LeipzigGermany

Personalised recommendations