Feta: A Light-Weight Architecture for User Oriented Semantic Service Discovery

  • Phillip Lord
  • Pinar Alper
  • Chris Wroe
  • Carole Goble
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3532)


Semantic Web Services offer the possibility of highly flexible web service architectures, where new services can be quickly discovered, orchestrated and composed into workflows. Most existing work has, however, focused on complex service descriptions for automated composition. In this paper, we describe the requirements from the bioinformatics domain which demand technically simpler descriptions, involving the user community at all levels. We describe our data model and light-weight semantic discovery architecture. We explain how this fits in the larger architecture of the my Grid project, which overall enables interoperability and composition across, disparate, autonomous, third-party services. Our contention is that such light-weight service discovery provides a good fit for user requirements of bioinformatics and possibly other domains.


Service Discovery Service Selection Service Description Williams Beuren Syndrome Bioinformatics Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arroyo, S., Stollberg, M., Ding, Y.: WSMO Primer. DERI Working Draft v01 (2004)Google Scholar
  2. 2.
    Bada, M., Stevens, R., Goble, C., Gil, Y., Ashburner, M., Blake, J.A., Cherry, J.M., Harris, M., Lewis, S.: A Short Study on the Success of the Gene Ontology. Accepted for publication in the Journal of Web Semantics (2004)Google Scholar
  3. 3.
    Bellwood, T.: UDDI Version 2.04 API Specification. UDDI Committee Specification, OASIS (July 2002)Google Scholar
  4. 4.
    Berners-Lee, T.: Semantic web. XML2000 (2000),
  5. 5.
    Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: Implementing the Semantic Web Recommendations. Technical report, HP Labs, December 24 (2003)Google Scholar
  6. 6.
    Garwood, K.L., Taylor, C.F., Runte, K.J., Brass, A., Oliver, S.G., Paton, N.W.: Pedro: a configurable data entry tool for XML. Bioinformatics, p. 251 (2004)Google Scholar
  7. 7.
    Lord, P., Bechhofer, S., Wilkinson, M.D., Schiltz, G., Gessler, D., Hull, D., Goble, C., Stein, L.: Applying semantic web services to bioinformatics: Experiences gained, lessons learnt. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 350–364. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.: Bringing Semantics to Web Services: The OWL-S Approach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Masuoka, R., Parsia, B., Labrou, Y.: Task computing - the semantic web meets pervasive computing. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 866–881. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Michalickova, K., Bader, G.D., Dumontier, M., Lien, H., Isserlin, D.B.R., Hogue, C.W.: SeqHound: biological sequence and structure database as a platform for bioinformatics research. BMC Bioinformatics 3(32) (2002)Google Scholar
  11. 11.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)CrossRefGoogle Scholar
  12. 12.
    Paolucci, M., Srinivasan, N., Sycara, K., Nishimura, T.: Towards a Semantic Choreography of Web Services: from WSDL to DAML-S. In: Proceedings of the International Conference on Web Services (ICWS 2003), pp. 22–26 (2003)Google Scholar
  13. 13.
    Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of web services using semantic descriptions. In: Web Services: Modeling, Architecture and Infrastructure workshop in ICEIS 2003, Angers, France (April 2003)Google Scholar
  14. 14.
    Stevens, R., Goble, C., Baker, P., Brass, A.: A Classification of Tasks in Bioinformatics. Bioinformatics 17(2), 180–188 (2001)CrossRefGoogle Scholar
  15. 15.
    Stevens, R., Tipney, H., Wroe, C., Oinn, T., Senger, M., Lord, P., Goble, C., Brass, A., Tassabehji, M.: Exploring Williams Beuren Syndrome Using myGrid. In: Bioinformatics, vol. 20, pp. i303–310 (2004); Intelligent Systems for Molecular Biology, ISMB (2004)Google Scholar
  16. 16.
    Tran, D., Dubay, C., Gorman, P., Hersh, W.: Applying task analysis to describe and facilitate bioinformatics tasks. Medinfo 2004, 818–822 (2004)Google Scholar
  17. 17.
    Wilkinson, M.D., Gessler, D., Farmer, A., Stein, L.: The BioMOBY Project Explores Open-Source, Simple, Extensible Protocols for Enabling Biological Database Interoperability. In: Proc. Virt Conf. Genom. and Bioinf., vol. 3, pp. 16–26 (2003)Google Scholar
  18. 18.
    Wroe, C., Goble, C., Greenwood, M., Lord, P., Miles, S., Papay, J., Payne, T., Moreau, L.: Automating experiments using semantic data on a bioinformatics grid. IEEE Intelligent Systems 19(1), 48–55 (2004)CrossRefGoogle Scholar
  19. 19.
    Wroe, C., Stevens, R., Goble, C., Roberts, A., Greenwood, M.: A Suite of DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. The International Journal of Cooperative Information Systems 12(2), 597–624 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Phillip Lord
    • 1
  • Pinar Alper
    • 1
  • Chris Wroe
    • 1
  • Carole Goble
    • 1
  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations