An Argumentation Ontology for DIstributed, Loosely-controlled and evolvInG Engineering processes of oNTologies (DILIGENT)

  • Christoph Tempich
  • H. Sofia Pinto
  • York Sure
  • Steffen Staab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3532)


A prerequisite to the success of the Semantic Web are shared ontologies which enable the seamless exchange of information between different parties. Engineering a shared ontology is a social process. Since its participants have slightly different views on the world, a harmonization effort requires discussing the resulting ontology. During the discussion, participants exchange arguments which may support or object to certain ontology engineering decisions. Experience from software engineering shows that tracking exchanged arguments can help users at a later stage to better understand the assumptions underlying the design decisions. Furthermore, as the constructed ontology becomes larger, ontology engineers might argue in a contradictory way without knowing so. In this paper we present an ontology which formalizes the main concepts which are used in an DILIGENT ontology engineering discussion and thus enables tracking arguments and allows for inconsistency detection. We provide an example which is drawn from experiments in an ontology engineering process to construct an ontology for knowledge management in our institute. Having constructed the ontology we also show how automated ontology learning algorithms could be taken as participants in the OE discussion. Hence, we enable the integration of manual, semi-automatic and automatic ontology creation approaches.


Domain Expert Argumentation Framework Argumentation Ontology Ontology Engineering Ontology Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. In: Advanced Information and Knowlege Processing. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Pinto, H.S., Tempich, C., Staab, S., Sure, Y.: Diligent: Towards a fine-grained methodology for distributed, loosely-controlled and evolving engingeering of ontologies. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, August 22nd - 27th, pp. 393–397. IOS Press, Amsterdam (2004)Google Scholar
  3. 3.
    Pinto, H.S., Staab, S., Sure, Y., Tempich, C.: OntoEdit Empowering SWAP: a Case Study in Supporting DIstributed, Loosely-Controlled and evolvInG Engineering of oNTologies (DILIGENT). In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 16–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Buckingham Shum, S., Motta, E., Domingue, J.: Augmenting design deliberation with compendium: The case of collaborative ontology design. In: HypACoM 2002: Facilitating Hypertext-Augmented Collaborative Modeling. ACM Hypertext 2002 Workshop, University Maryland, MD (2002), from Retrieved November 24 (2004)
  5. 5.
    Ramesh, B., Dhar, V.: Supporting systems development by capturing deliberations during requirements engineering. IEEE Trans. Softw. Eng. 18, 498–510 (1992)CrossRefGoogle Scholar
  6. 6.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems 16 (2001)Google Scholar
  7. 7.
    Sure, Y., Studer, R.: On-To-Knowledge methodology. In: Davies, J., et al. (eds.) On-To-Knowledge: Semantic Web enabled Knowledge Management. J. Wiley and Sons, Chichester (2002)Google Scholar
  8. 8.
    Holsapple, C.W., Joshi, K.D.: A collaborative approach to ontology design. Commun. ACM 45, 42–47 (2002)CrossRefGoogle Scholar
  9. 9.
    Kotis, K., Vouros, G.A., Alonso, J.P.: HCOME: tool-supported methodology for collaboratively devising living ontologies. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 155–166. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Kunz, W., Rittel, H.W.J.: Issues as elements of information systems. Working Paper 131, Institute of Urban and Regional Development, University of California (1970)Google Scholar
  11. 11.
    Aschoff, F.R., Schmalhofer, F., van Elst, L.: Knowledge mediation: A procedure for the cooperative construction of domain ontologies. In: Abecker, A., van Elst, L., Dignum, V. (eds.) Proceedings of Workshop on Agent-Mediated Knowledge Management at the 16th European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, pp. 20–28 (2004)Google Scholar
  12. 12.
    Conklin, J., Begeman, M.L.: gibis: a hypertext tool for exploratory policy discussion. In: Proc. of the 1988 ACM conference on Computer-supported cooperative work (1988)Google Scholar
  13. 13.
    Potts, C., Bruns, G.: Recording the reasons for design decisions. In: Proceedings of the 10th international conference on Software engineering. IEEE Computer Society Press, Los Alamitos (1988)Google Scholar
  14. 14.
    Gotel, O., Finkelstein, A.: Extended requirements traceability: Results of an industrial case study. In: Proceedings of the 3rd IEEE International Symposium on Requirements Engineering (RE 1997), p. 169. IEEE Computer Society, Los Alamitos (1997)CrossRefGoogle Scholar
  15. 15.
    Selvin, A., Buckingham Shum, S., Sierhuis, M., Conklin, J., Zimmermann, B., Palus, C., Drath, W., Horth, D., Domingue, J., Motta, E., Li, G.: Compendium: Making meetings into knowledge events. In: Knowledge Technologies, Austin, TX (2001)Google Scholar
  16. 16.
    Mann, W.C., Thompson, S.A.: Rhetorical structure theory: A theory of text organization. In: Polanyi, L. (ed.) The Structure of Discourse. Ablex Publishing Corp., Norwood (1987)Google Scholar
  17. 17.
    Gordon, T.F., Karacapilidis, N.: The zeno argumentation framework. In: Proceedings of the sixth international conference on Artificial intelligence and law, pp. 10–18. ACM Press, New York (1997)CrossRefGoogle Scholar
  18. 18.
    Hunter, A.: Towards higher impact argumentation. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI 2004, pp. 275–280. AAAI Press / The MIT Press (2004)Google Scholar
  19. 19.
    Pinto, H.S., Martins, J.: A Methodology for Ontology Integration. In: Proc. of the First Int. Conf. on Knowledge Capture (K-CAP 2001), pp. 131–138. ACM Press, New York (2001)CrossRefGoogle Scholar
  20. 20.
    Uschold, M., King, M.: Towards a methodology for building ontologies. In: Proc. of IJCAI 1995 WS, Montreal, Canada (1995)Google Scholar
  21. 21.
    Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing. In: Guarino, N., Poli, R. (eds.) Formal Ontol. in Conc. Analysis and Knowl. Rep. Kluwer Acad. Pub, Dordrecht (1993)Google Scholar
  22. 22.
    Buckingham Shum, S., Gangmin Li, V.U., Domingue, J., Motta, E.: Visualizing internetworked argumentation. In: Kirschner, P.A., et al. (eds.) Visualizing Argumentation: Software Tools for Collaborative and Educational Sense-Making, pp. 185–204. Springer, Heidelberg (2003)Google Scholar
  23. 23.
    Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven ontology evolution management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, p. 285. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christoph Tempich
    • 2
  • H. Sofia Pinto
    • 1
  • York Sure
    • 2
  • Steffen Staab
    • 3
  1. 1.Dep. de Engenharia InformáticaInstituto Superior TécnicoLisboaPortugal
  2. 2.Institute AIFBUniversity of KarlsruheKarlsruheGermany
  3. 3.ISWebUniversity of Koblenz LandauKoblenzGermany

Personalised recommendations