Advertisement

Towards a Fuzzy Description Logic for the Semantic Web (Preliminary Report)

  • U. Straccia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3532)

Abstract

In this paper we present a fuzzy version of \(\mathcal{SHOIN}\)(D), the corresponding Description Logic of the ontology description language OWL DL. We show that the representation and reasoning capabilities of fuzzy \(\mathcal{SHOIN}\)(D) go clearly beyond classical \(\mathcal{SHOIN}\)(D). We present its syntax and semantics. Interesting features are that concrete domains are fuzzy and entailment and subsumption relationships may hold to some degree in the unit interval [0,1].

References

  1. 1.
    Baader, F., Hanschke, P.: A schema for integrating concrete domains into concept languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), Sydney, pp. 452–457 (1991)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. The MIT Press, Cambridge (1990)Google Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. The Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  5. 5.
    Bonatti, P., Tettamanzi, A.: Some complexity results on fuzzy description logics. In: Di Gesù, V., Masulli, F., Petrosino, A. (eds.) WILF 2003. LNCS (LNAI), vol. 2955, pp. 19–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    da Silva, R.M., Pereira, A.E.C., Andrade Netto, M.: A system of knowledge representation based on formulae of predicate calculus whose variables are annotated by expressions of a fuzzy terminological logic. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945, pp. 409–417. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic Press, New York (1980)zbMATHGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: Approximate and commonsense reasoning: From theory to practice. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS (LNAI), vol. 1079, pp. 19–33. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Pan et al.: Specification of coordination of rule and ontology languages. Technical report, Knowledgeweb Network of Excellence, EU-IST-2004-507482, Deliverable D2.5.1 (2004)Google Scholar
  10. 10.
    Guarino, N., Poli, R.: Formal ontology in conceptual analysis and knowledge representation. Int. Journal of Human and Computer Studies 43(5/6), 625–640 (1995)CrossRefGoogle Scholar
  11. 11.
    Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Hänle, R., Escalada-Imaz, G.: Deduction in many-valued logics: a survey. Mathware and Soft Computing IV(2), 69–97 (1997)Google Scholar
  13. 13.
    Hölldobler, S., Störr, H.-P., Khang, T.D.: A fuzzy description logic with hedges and concept modifiers. In: Proc. of the 10th Int. Conf. on Information Processing and Managment of Uncertainty in Knowledge-Based Systems, IPMU 2004 (2004)Google Scholar
  14. 14.
    Horrocks, I.: Using an expressive description logic: Fact or fiction? In: Proc. of the 8th Int. Conf. on the Principles of Knowledge Representation and Reasoning, KR 1998 (1998)Google Scholar
  15. 15.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  16. 16.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. Journal of Web Semantics (2004)Google Scholar
  17. 17.
    Kruse, R., Schwecke, E., Heinsohn, J.: Uncertainty and Vagueness in Knowledge Based Systems. Springer, Berlin (1991)zbMATHGoogle Scholar
  18. 18.
    Lutz, C.: Description logics with concrete domains—a survey. In: Advances in Modal Logics, vol. 4. King’s College Publications (2003)Google Scholar
  19. 19.
    Lutz, C., Wolter, F., Zakharyaschev, M.: A tableau algorithm for reasoning about concepts and similarity. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 134–149. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Lutz, C.: Reasoning with concrete domains. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence, pp. 90–95. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  21. 21.
    Lutz, C.: Nexp time-complete description logics with concrete domains. ACM Trans. Comput. Logic 5(4), 669–705 (2004)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Los Altos (1988)Google Scholar
  23. 23.
    Sánchez, D., Tettamanzi, G.B.: Generalizing quantification in fuzzy description logics. In: Proc. of the 8th Fuzzy Days in Dortmund (2004)Google Scholar
  24. 24.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48, 1–26 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Straccia, U.: A fuzzy description logic. In: Proc. of the 15th Nat. Conf. on Artificial Intelligence (AAAI 1998), Madison, USA, pp. 594–599 (1998)Google Scholar
  26. 26.
    Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Straccia, U.: Transforming fuzzy description logics into classical description logics. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Straccia, U.: Fuzzy description logics with concrete domains. Technical Report 2005-TR-03, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy (2005)Google Scholar
  29. 29.
    Tresp, C., Molitor, R.: A description logic for vague knowledge. In: Proc. of the 13th European Conf. on Artificial Intelligence (ECAI 1998), Brighton (England) (August 1998)Google Scholar
  30. 30.
    Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), pp. 472–477 (1991)Google Scholar
  31. 31.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • U. Straccia
    • 1
  1. 1.ISTI-CNRPisaItaly

Personalised recommendations