Skip to main content

References

  • Chapter
  • First Online:
Percolation Theory for Flow in Porous Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 674))

  • 596 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alder, P. M., C. G. Jacquin, and J. F. Thovert, 1992, The formation factor of reconstructed porous media: Water Resources Res. 28: 1571–1576.

    Article  Google Scholar 

  • Ambegaokar, V. N., B. I. Halperin, and J. S. Langer, 1971. Hopping conductivity in disordered systems. Phys. Rev. B, 4: 2612–2621.

    Article  Google Scholar 

  • Amyx, J. W., Bass, D. M., and Whiting, R. L.: 1960,Petroleum Reservoir Engineering. Physical Properties, McGraw-Hill Book C., New York.

    Google Scholar 

  • Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics:Trans. Am. Inst. Mech. Eng.146: 54–61.

    Google Scholar 

  • Arya, L. M., and J. F. Paris, 1981. A physicoempirical model to predict the soil moisture characteristic from particle size distribution and bulk density data.Soil Sci. Soc. Am. J.45: 1023–1080.

    Google Scholar 

  • Balberg, I., 1987, Recent developments in continuum percolation,Philos. Mag. B 30: 991–1003.

    Google Scholar 

  • Banavar, J. R., and D. L. Johnson, 1987, Characteristic pore sizes and transport in porous media,Phys. Rev.B 35: 7283–6.

    Google Scholar 

  • Barraclough, D., and P. H. Nye, 1979, The effect of molecular size on diffusion characteristics in soil,J. Soil Sci.30: 29.

    Google Scholar 

  • Barraclough, D., and P. B. Tinker, 1981, The determination of ionic diffusion coefficients in field soils. I. Diffusion coefficients in sieved soils in relation to water content and bulk density,J. Soil Sci.32: 225.

    Google Scholar 

  • Bauters, T. W. J., DiCarlo, D. A., Steenhuis, T. S., and Parlange, J.-Y. 1998 Preferential flow in water-repellent sands.Soil Sci. Soc. Am. J.62: 1185–1190.

    Google Scholar 

  • Baveye, P., J.-Y. Parlange, and B.A. Stewart (ed.) 1998.Fractals in soil science. CRC Press, Boca Raton, FL

    Google Scholar 

  • Berkowitz, B., and I. Balberg, 1992, Percolation approach to the problem of hydraulic conductivity in porous media,Transport in Porous Media,9: 275–286.

    Article  Google Scholar 

  • Berkowitz, B., I. Balberg, 1993, Percolation theory and its application to groundwater hydrology,Water Resour. Res.,29: 775–794.

    Article  Google Scholar 

  • Bernabe, Y, and Bruderer, C., 1998, Effect of the variance of pore size distribution on the transport properties of heterogeneous networks,J. Geophys. Res., 103: 513.

    Google Scholar 

  • Bernabe, Y., and A. Revil, 1995, Pore-scale heterogeneity, energy dissipation and the transport properties of rocks,Geophys. Res. Lett.22: 1529–32.

    Google Scholar 

  • Berryman, J. G., and G. W. Milton, 1985,J. Chem. Phys.83: 745.

    Article  Google Scholar 

  • Bigalke, J., 2000, A study concerning the conductivity of porous rock, Physics and Chemisty of the Earth,25: 189–194.

    Google Scholar 

  • Binley, A., Winship, P., Middleton, R., Pokar, M., and West, J. L., 2001, Observation of seasonal dynamics in the vadose zone using borehole radar and resistivity. In Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems, SAGEEP, March 4–7, 2001.

    Google Scholar 

  • Binley, A. C., Cassiani, R. Middleton, and P. Winship, 2002, Vadose zone model parameterization using cross-borehole radar and resistivity imaging. J. Hydrol.267: 147–159.

    Google Scholar 

  • Bird, N. R. A., E. Perrier, and M. Rieu, 2000, The water retention function for a model of soil structure with pore and solid fractal distributions, Eur. J. Soil Sci.,51: 55–63.

    Article  Google Scholar 

  • Bittelli, M., G. S. Campbell, and M. Flury, 1999. Characterization of particle-size distribution in soils with a fragmentation model.Soil Sci. Soc. Am. J. 63: 782–788.

    Google Scholar 

  • Blunt, M. J., and Scher, H., 1995, Pore-level model of wetting,Phys. Rev. E, 52: 6387–403.

    Article  Google Scholar 

  • Brace, W. F., 1980, Permeability of crystalline and argillaceous rocks, Int. J. Rock Mech. Min.17: 242–251.

    Google Scholar 

  • Bradbury, K. R., and M. A. Muldoon, 1990, Hydraulic conductivity determinations in unlithified glacial and fluvial materials, In Nielson, D. M., and A. I. Johnson, eds., Ground Water and Vadose Zone Monitoring, ASTM STP 1053, 138–151.

    Google Scholar 

  • Bredehoeft, J. D., 1983, Groundwater – A review,Rev. Geophys.21: 760765.

    Google Scholar 

  • Broadbent, S. R., and J. M. Hammersley, 1957, Percolation processes, 1. Crystals and mazes,Proc. Cambridge Philos. Soc.,53: 629–641.

    Google Scholar 

  • Brooks, R. H., and A. T. Corey, 1964. Hydraulic properties of porous media, Colorado State Univ. Hydrology Paper 3.

    Google Scholar 

  • Burdine, N. T., 1953, Relative permeability calculations from pore-size distribution data. Petrol. Trans.Am Inst. Min. Eng.198: 71–77.

    Google Scholar 

  • Bussian, A. E., 1983,Geophysics48, 1258.

    Article  Google Scholar 

  • Butler, J. J., and J. M. Healey, 1998, Relationship between pumping-test and slug-test parameters: Scale effect or artifact?,Ground Water36: 305–313.

    Google Scholar 

  • Carman, P. C. 1956,Flow of Gases Through Porous Media, Butterworths, London.

    Google Scholar 

  • Cassiani, G., E. Dalla, A. Brovelli, and D. Pitea, Pore-scale modeling of electrical conductivity in unsaturated sandstones, Computational methods in Water Resources: Proceedings of the XVth International Conference, June 13–17, 2004, Chapel Hill, NC, USA. pp. 235–246.

    Google Scholar 

  • Chandler, R., J. Koplik, K. Lerman, and J. F. Willemsen, 1982, Capillary displacement and percolation in porous media,J. Fluid Mech.,119, 249–267.

    Google Scholar 

  • Chen, G., W. A. Illman, D. L. Thompson, V. V. Vesselinov, and S. P. Neuman, Geostatistical, type curve and inverse analyses of pneumatic injection tests in unsaturated fractured tufs at the Apache Leap Research Site near Superior Arizona, 73–98, in Dynamics of Fluids in Fractured Rocks, edited by B. Faybishenko et al., Geophysical Monograph 122, AGU, Washington, DC.

    Google Scholar 

  • Childress, S., 1972,J. Chem. Phys.,56: 2527.

    Article  Google Scholar 

  • Childs, E. C., and N. Collis-George, 1950, The permeability of porous materials,Proc. Royal Soc. London, Ser. A,201: 392–405.

    Google Scholar 

  • Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000a, The determination of diffusion coefficient of invert materials. TDR-EBS-MD-000002 REV 00.CRWMS M&O Las Vegas, NV

    Google Scholar 

  • Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000a, Invert diffusion properties model. ANL-EBS-MD-000031 REV 01.CRWMS M&O Las Vegas, NV

    Google Scholar 

  • Conca, J. L., 1990, Diffusion barrier transport properties of unsaturated Paintbrush tuff rubble backfill, p. 394–401. In Proceedings of the First International High-Level Radioactive Waste Management Conference. ASCE and American Nuclear Society, Las Vegas, NV.

    Google Scholar 

  • Conca, J. L., and J. Wright, 1992, Diffusion and flow in gravel, soil, and whole rock,Appl. Hydrogeol. 1: 5–24.

    Google Scholar 

  • Currie, J. A. 1970.Movement of gases in soil respiration. Sorption and transport processes in soils. Rothamsted Exp. Stn., Harpenden, England.

    Google Scholar 

  • Davy, P., O. Bour, C. Darcel, and J. De Dreuzy, 2002, Permeability of 2D multi-scale fracture networks, Eos, Trans.AGU Abstract H71B-0822,83(47).

    Google Scholar 

  • de Gennes, P. G., 1985, in Phys. of Disordered Materials, D. Adler, H. Fritzsche, and S. R. Ovshinsky (eds.) Plenum Press, N. Y.

    Google Scholar 

  • Derrida, B., and J. Vannimenus, 1982, A transfer matrix approach to random resistor networks,J. Phys. A: Math. Gen.13: L557–64.

    Google Scholar 

  • Di Federico, V., and S. P. Neuman, 1997, Scaling of random fields by means of truncated power variograms and associated spectra,Water Resour. Res.,33: 1075–1085.

    Article  Google Scholar 

  • Di Federico, V., and Neuman, S. P., 1998, Flow in multiscale log conductivity fields with truncated power variograms,Water Resources Research,34: 975–987.

    Google Scholar 

  • Di Federico, V., Neuman, S. P., and Tartakovsky, D. M., 1999, Anisotropy, lacunarity, and upscaled conductivity and its autocovariance in multiscale random fields with truncated power variograms,Water Resources Research35: 2891–2908.

    Article  Google Scholar 

  • Ewing, R. P., 2004, Soil Physics Lecture Notes, http://www.agron.iast"–ate.edu/soilphysics/a577pot1.html

    Google Scholar 

  • Ewing, R. P., and R. Horton. 2003. Scaling in diffusive transport. In: Scaling Methods in Soil Physics (Ya. Pachepsky, ed.). CRC Press, Boca Raton.

    Google Scholar 

  • Fatt, I., 1956, The network model of porous media,Trans. Am. Inst. Min. Metall. Pet. Eng.,207: 144–177.

    Google Scholar 

  • Feng, S., B. I. Halperin, and P. N. Sen, 1987, Transport properties of continuum systems near the percolation threshold,Phys. Rev. B,35: 197.

    Article  Google Scholar 

  • Filgueira, R. R. Ya. A. Pachepsky, L. L. Fournier, G. O. Sarli, and A. Aragon, 1999, Comparison of fractal dimensions estimated from aggregate mass-size distribution and water retention scaling,Soil Sci.,164: 217–223.

    Article  Google Scholar 

  • Fisher, M. E., 1971, inCritical Phenomena, Enrico Fermi Summer School, ed. M. S. Green, Academic Press, New York, p. 1.

    Google Scholar 

  • Freeman, E. J., 1995.Fractal Geometries Applied to Particle Size Distributions and Related Moisture Retention Measurements at Hanford, Washington, M. A. Thesis, University of Idaho.

    Google Scholar 

  • Friedman, L., and M. Pollak, 1981, The Hall effect in the variable-range hopping systemPhilos. Mag. B44: 487–507.

    Google Scholar 

  • Friedman, S. P., and N. A. Seaton, 1998, Critical path analysis of the relationship between permeability and electrical conductivity of three-dimensional pore networks,Water Resources Res.,34: 1703.

    Google Scholar 

  • Galam, S., and A. Mauger, 1997, A universal formula for percolation thresholds II. Extension to anisotropic and aperiodic lattices, Phys. Rev. E.56: 322.

    Article  Google Scholar 

  • Garboczi, E. J., 1995, K.A. Snyder, J.F. Douglas, and M.F. Thorpe,Physical Review E 52, 819–828 (1995).

    Article  Google Scholar 

  • Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p. 383–411.InA. Klute. (ed.)Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.

    Google Scholar 

  • Gimenez, D, E. Perfect, W. J. Rawls, Ya A. Pachepsky, 1997, Fractal models for predicting soil hydraulic properties: a review,Eng. Geol.,48: 161–183.

    Article  Google Scholar 

  • Golden, K. M. 2001. Brine percolation and the transport properties of sea ice.Ann.Glaciology,33:28–36.

    Google Scholar 

  • Golden, K. M., Ackley, S. F., and Lytle, V. I. 1998, The percolation phase transition in sea ice,Science,282: 2238–2241.

    Google Scholar 

  • Graham-Bryce, I. J., 1963, Effect of moisture content and soil type on self diffusion of 86Rubidium in soils,J. Agric. Sci.60: 239.

    Google Scholar 

  • Gvirtzman, H., and P. V. Roberts, 1991, Pore scale spatial analysis of two immiscible fluids in porous media.Water Resour. Res.,27: 1167.

    Article  Google Scholar 

  • Hansen, D., 2004, Discussion of “On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils”, NRC Research Press Web site at http://cgj.nrc.ca (Appears inCanadian Geotechnical Journal,40: 616–628).

    Google Scholar 

  • Hasimoto, H., 1959,J. Fluid Mech.5: 317.

    Google Scholar 

  • Hassanizadeh, S. M., and W. G. Gray, 1993, Toward an improved description of two-phase flow,Adv. Water Res.16: 53–67.

    Google Scholar 

  • Hazlett, R. D., and M. J. Furr. 2000. Percolation model for permeability reduction in porous media by continuous-gas foams.Ind. Eng. Chem. Res.39:2709–2716.

    Article  Google Scholar 

  • Heiba, A. A., M. Sahimi, L. E. Scriven, and H. T. Davis, 1982, Percolation theory of two-phase relative permeability,SPE Reservoir Eng.7: 123–132.

    Google Scholar 

  • Hilfer, R., 1991,Phys. Rev.44: 60.

    Google Scholar 

  • Hinch, E. J., 1977,J. Fluid Mech.,83: 695.

    Google Scholar 

  • Howells, I. D., 1974,J. Fluid Mech.64: 449.

    Google Scholar 

  • Hu, Q., and J. Wang, Aqueous phase diffusion in unsaturated geologic media: A review, 2003,Crit. Rev. Environ. Sci. Tech.,33: 275–297.

    Google Scholar 

  • Hu, Q., T. J. Kneafsey, J. J. Roberts, L. Tomutsa, and J. S. Y. Wang, 2004, Characterizing unsaturated diffusion in porous tuff gravel,Vadose Zone Journal,3: 1425–1438.

    Google Scholar 

  • Hunt, A. G., 1991, The calorimetric glass transition: A simple model,Phil. Mag. B 64, 563–567.

    Google Scholar 

  • Hunt, A. G., 1993, Non-Debye relaxation and the glass transition,J. Non-Cryst. Solids, 160R183–227.

    Google Scholar 

  • Hunt, A. G., 1998, Upscaling in Subsurface Transport Using Cluster Statistics of Percolation,Transport in Porous Media30(2),177–198.

    Google Scholar 

  • Hunt, A. G., 2000, Percolation Cluster Statistics and Conductivity Semi-variograms,Transport in Porous Media,39131–141.

    Article  Google Scholar 

  • Hunt, A. G., 2001a, AC Hopping Conduction: Perspective from Percolation Theory,Philosophical Magazine, B,81875–913.

    Google Scholar 

  • Hunt, A. G., 2001b, Applications of Percolation Theory to Porous Media with Distributed Local Conductances,Advances in Water Resources24(3,4), 279–307.

    Google Scholar 

  • Hunt, A. G., 2003, Some Comments on the Scale Dependence of the Hydraulic Conductivity in the Presence Of Nested Heterogeneity,Advances in Water Resources,26, 71–77.

    Google Scholar 

  • Hunt, A. G., 2004a, Continuum Percolation Theory for Water Retention and Hydraulic Conductivity of Fractal Soils: 2. Extension to Non-Equilibrium, Advances in Water Resources,27, 245–257.

    Google Scholar 

  • Hunt, A. G., 2004b, A note comparing van Genuchten and percolation theoretical formulations of the hydraulic properties of unsaturated media Vadose Zone Journal,3: 1483–1488.

    Google Scholar 

  • Hunt, A. G., 2004c, Percolative Transport and Fractal Porous Media,Chaos, Solitons, and Fractals, 19, 309–325.

    Article  Google Scholar 

  • Hunt, A. G., 2004d, Continuum percolation theory and Archie's law, Geophysical ResearchLetters,31(19): art. no. L19503.

    Google Scholar 

  • Hunt, A. G., 2004e, Continuum Percolation Theory for Water Retention and Hydraulic Conductivity of Fractal Soils: 1. Estimation of the Critical Volume Fraction for Percolation,Advances in Water Resources,27, 175–183.

    Google Scholar 

  • Hunt, A. G., 2004f, Comment on “Modeling low-frequency magnetic-field precursors to the Loma Prieta Earthquake with a precursory increase in fault-zone conductivity,” by M. Merzer and S. L. Klemperer,Pure and Applied Geophysics, accepted, 2004.

    Google Scholar 

  • Hunt, A. G., 2004g, Scale-dependent dimensionality cross-over; implications for scale-dependent hydraulic conductivity in anisotropic porous media, accepted toHydrogeology Journal.

    Google Scholar 

  • Hunt, A, G., 2004h, An explicit derivation of an exponential dependence of the hydraulic conductivity on saturation,Advances in Water Resources,27, 197–201.

    Google Scholar 

  • Hunt, A. G., 2005a, Continuum percolation theory for saturation dependence of air permeability,Vadose Zone Journal,4: 134–138.

    Google Scholar 

  • Hunt, A. G., 2005b, Percolation theory and the future of hydrogeology, Hydrogeology Journal,13: 202–205.

    Article  Google Scholar 

  • Hunt, A. G., and Ewing, R. P., 2003, On The Vanishing of Solute Diffusion in Porous Media at a Threshold Moisture Content,Soil Science Society of America Journal,67, 1701–1702, 2003.

    Google Scholar 

  • Hunt, A. G., and Gee, G. W., 2002a, Water Retention of Fractal Soil Models Using Continuum Percolation Theory: Tests of Hanford Site Soils,Vadose Zone Journal, 1, 252–260.

    Google Scholar 

  • Hunt, A. G., and Gee, G. W., 2002b, Application of Critical Path Analysis to Fractal Porous Media: Comparison with Examples from the Hanford Site, Advances in Water Resources,25, 129–146.

    Article  Google Scholar 

  • Hunt, A. G., and Gee, G. W., 2003, Wet-End Deviations from Scaling of the Water Retention Characteristics of Fractal Porous Media,Vadose Zone Journal,2, 759–765.

    Google Scholar 

  • Hunt, A. G., and Skinner, T. H., 2005, Hydraulic conductivity limited equilibration: Effect on water-retention characteristics,Vadose Zone Journal,4: 145–150.

    Google Scholar 

  • Hyun, Y., S. P. Neuman, V. V. Vesselinov, W. A. Illman, D. M. Tartakovsky, and V. DiFederico, 2002, Theoretical interpretation of a pronounced permeability scale-effect in unsaturated fractured tuff,Water Resour. Res., in press.

    Google Scholar 

  • Ioannidis, M. A., and I. Chatzis, 1993, The effect of spatial correlations on the accessibility characteristics of three-dimensional cubic networks as related to drainage displacements in porous media,Water Resour. Res.27; 1777.

    Google Scholar 

  • Jerauld, G. R., J. C. Hatfield, L. E. Scriven, and H. T. Davis, 1984, Percolation and conduction on Voronoi and triangular networks: a case study in topological disorder,J. Phys. C,17: 1519–1529.

    Google Scholar 

  • Johnson, D. L., and L. M. Schwartz, 1989, Unified theory of geometric effects in transport properties of porous media. In Paper presented at SPWLA, 30th Annual Logging Symposium, Soc. of Prof. Well Log. Anal. Houston, TX.

    Google Scholar 

  • Jullien, R., and R. Botet, 1987,Aggregation and Fractal Aggregates, World Scientific, Singapore.

    Google Scholar 

  • Jurinak, J. J., S. S. Sandhu, and L. M. Dudley, 1987, Ionic diffusion coefficients as predicted by conductometric techniques,Soil Sci. Soc. Am. Proc.51: 626.

    Google Scholar 

  • Katz, A. J., and A. H. Thompson, 1985, Fractal sandstone pores: Implications for conductivity and pore formation,Phys. Rev. Lett.,54: 1325–1328.

    Article  Google Scholar 

  • Katz, A. J., and A. H. Thompson, 1986, Quantitative prediction of permeability in porous rock,Phys. Rev. B,34: 8179–8181.

    Google Scholar 

  • Keffer, D., A. V. McCormick, and H. T. Davis, 1996, Diffusion and percolation on zeolite sorption lattices,J. Phys. Chem.US100: 967–973.

    Google Scholar 

  • Khaleel, R., and E. J. Freeman, 1995. Variability and scaling of hydraulic properties for 200 area soils, Hanford site, Westinghouse Hanford Company Report WHC-EP-0883.

    Google Scholar 

  • Khaleel, R., and J. F. Relyea, 2001. Variability of Gardner's alpha for coarse-textured sediments.Water Resour. Res.37: 1567–1575.

    Article  Google Scholar 

  • Kim, S., and W. B. Russell, 1985,J. Fluid Mech.154: 269.

    Google Scholar 

  • Kirkpatrick, S., 1971,Phys. Rev. Lett.,27, 1722.

    Article  Google Scholar 

  • Kirkpatrick, S., 1973,Rev. Mod. Phys.45, 574.

    Article  Google Scholar 

  • Klute, A., and J. Letey, 1958, The dependence of ionic diffusion on the moisture content of nonsorbing porous media,Soil Sci. Soc. Am. Proc., 22: 213.

    Google Scholar 

  • Kogut, P. M., and J. Straley, 1979, Distribution-induced non-universality of the percolation conductivity exponents,J. Phys. C. Solid State Physics,12: 2151–2159.

    Google Scholar 

  • Kozeny, J., 1927, Ueber Kapillare Leitung des Wasssers im Boden, Sitzungsber. Adak. Wiss. Wien,136: 271–306.

    Google Scholar 

  • Krohn, C. E., and A. H. Thompson, 1986, Fractal sandstone pores: Automated measurements using scanning-electron-microscope images,Phys. Rev. B,33: 6366–6374.

    Article  Google Scholar 

  • Kuentz, M., J C. Mareschal, and P. Lavallee, 2000, Numerical estimation of electrical conductivity in saturated porous media with a 2-D lattice gas, Geophysics,65: 766–772.

    Google Scholar 

  • Kunz, H., and B. Souillard, 1978,Phys. Rev. Lett.40: 133.

    Article  Google Scholar 

  • Kunze, R. J., G Uchara, and K. Graam, 1968, Factors important in the calculation of hydraulic conductivity,Soil Sci. Soc. Am. J.32: 760–765.

    Google Scholar 

  • Larson, R. E., and J. J. L. Higdon, 1989,Phys. Fluids A1: 38.

    Article  Google Scholar 

  • Le Doussal, P., 1989, Permeability versus conductivity for porous media with wide distribution of pore sizes,Phys. Rev.B 39: 4816–19.

    Google Scholar 

  • Lemaitre, J., J. P. Roadec, D. Bideau, A. Gervois, and E. Bougault, 1988, The formation factor of the pore space of binary mixtures of spheres:J. Phys. D: Appl. Phys. 21: 1589–1592.

    Article  Google Scholar 

  • Lenhard, R. J. 1992. Measurement and modeling of 3-phase saturation pressure hysteresis.J. Contam. Hydrol.9: 243–169.

    Google Scholar 

  • Lenhard, R. J., Parker, J.C., and Kaluarachchi, J. J., 1991. Comparing simulated and experimental hysteretic 2-phase transient fluid-flow phenomena.Water Resour. Res.27: 2113–2124.

    Article  Google Scholar 

  • Le Ravalec, M., M. Darot, T. Reuschle, and Y. Gueguen, 1996, Transport properties and microstructural characgteristics of a thermally cracked mylonite,Pageoph.146: 207–227.

    Google Scholar 

  • Long, A. R., and L. Hansmann, 1990,Hopping and Related Phenomena, ed. M. Pollak and H. Fritzsche (Singapore, World Scientific), p. 309.

    Google Scholar 

  • Long, A. R., J. McMillen, N. Balkan, and S. Summerfield, 1988, The application of the extended pair approximation to hopping conduction in rf sputtered amorphous silicon,Phil. Mag.B 58: 153–169.

    Google Scholar 

  • Lopez, E. S. V. Buldyrev, N. V. Dokholyan, L. Goldmakher, S. Havlin, P. R. King, and H. E. Stanley, 2003, Postbreakthrough behavior in flow through porous media,Phys. Rev. E67, 056314: 1–16.

    Google Scholar 

  • Luckner, L., M. Th. van Genuchten, and D. R. Nielsen, 1989, A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface.Water Resour. Res.25: 2187–2193.

    Google Scholar 

  • Mallory, K., 1993, Active subclusters in percolative hopping transport, Phys. Rev. B47: 7819–7826.

    Article  Google Scholar 

  • Mandelbrot, B. B., 1983, TheFractal Geometry of Nature, W. H. Freeman, San Francisco.

    Google Scholar 

  • Mandelson, K. S., and M. H. Cohen, 1982,Geophysics47: 257.

    Google Scholar 

  • Manwart, C., S. Torquato, and R. Hilfer, 2000, Stochastic reconstruction of sandstones.Phys. Rev. E,62:893–899, 2000.

    Article  Google Scholar 

  • Manwart, C., and R. Hilfer. Permeability and conductivity for reconstruction models of porous media.Phys. Rev. E,64:21304, 2001.

    Google Scholar 

  • Marshall, T. J., J. W. Holmes, C. W. Rose, 1996,Soil Physics, 3rd Edition, 469 pages ISBN:0521451515 ISBN13:9780521451512.

    Google Scholar 

  • Martinez-Landa, L., J. Carrera, J. Guimera, E. Vasquez-Suñe, L. Vives and P. Meier, 2000, Methodology for the hydraulic characterization of a granitic block, 340–345, inCalibration and Reliability in Groundwater Modeling: Coping with Uncertainty, ModelCARE 99, edited by F. Stauffer, W. Kinzelbach, K. Kovar and E. Hoem, IAHS Publication 265, IAHS Press, Wallingford, Oxfordshire, UK.

    Google Scholar 

  • Matheron, G., 1967Elements pour une Theorie des Milieux Poreux, Masson et Cie, Paris.

    Google Scholar 

  • Mattisson, C., and M. A. Knackstedt, 1987, Transport in fractured porous solids,Geophys. Res. Lett.,24: 495–498.

    Google Scholar 

  • McPherson, B.J., and the EarthLab Steering Committee,~ 2003, EarthLab: A Subterranean Laboratory and Observatory to Study Microbial Life, Fluid~ Flow, and Rock Deformation, Geosciences Professional Services, Inc., 60 pp.

    Google Scholar 

  • Mehta, B. K., S. Shiozawa, and M. Nakano, 1995, Measurement of molecular diffusion of salt in unsaturated soils,Soil Sci.159: 115.

    Google Scholar 

  • Merzer, M., and Klemperer, S. L., 1997, Modeling low-frequency magnetic-field precursors to the Loma Prieta Earthquake with a precursory increase in fault-zone conductivity,Pure and Applied Geophysics,150: 217–248.

    Article  Google Scholar 

  • Miller, E. E., and R. W. Miller, 1956, Physical theory for capillary flow phenomena,J. Appl. Phys.,27: 324–332.

    Google Scholar 

  • Miller, A., and E. Abrahams, 1960, Phys. Rev. 120: 745.

    Google Scholar 

  • Millington, R. J., and J. P. Quirk, 1959, Permeability of porous media. Nature(London)183: 387–388.

    Google Scholar 

  • Millington, R. J., and J. P. Quirk, 1961, Permeability of porous media, Trans. Faraday Soc.57: 1200–1208.

    Article  Google Scholar 

  • Moldrup, P., T. Olesen, J. Gamst, P. SchjØnning, T. Yamaguchi, and D.E. S Rolston, 2000, Predicting the gas diffusion coefficient in repacked soil: Water-Induced Linear Reduction Model,Soil Science Society of America Journal,64: 1588–1594.

    Google Scholar 

  • Moldrup, P., T. Oleson, T. Komatsu, P. Schjoning, and D. E. Rolston, 2001. Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases.Soil Sci. Soc. Am. J.65: 613–623.

    Google Scholar 

  • Moldrup, P., S. Yoshikawa, T. Oleson, T. Komatsu, and D. E. Rolston, 2003, Air permeability in undisturbed volcanic ash soils: Predictive model test and soil structure fingerprint,Soil Science Society of America Journal67: 32–40.

    Google Scholar 

  • Moreno, L., and C. F. Tsang, 1994, Flow channeling in strongly heterogeneous porous media: A numerical study,Water Resour. Res.30; 1421.

    Article  Google Scholar 

  • Mott, N. F., 1969,Phil. Mag.19, 835.

    Google Scholar 

  • Mualem, Y., 1976, A new model for predicting the hydraulic conductivity of unsaturated porous media,Water Resour. Res.12: 513–522.

    Google Scholar 

  • Mualem, Y., 1976. A Catalogue of the Hydraulic Properties of Unsaturated Soils, Res. Proj. No. 442, Technion, Israel Institute of Technology, Haifa.

    Google Scholar 

  • Mualem,Y., and G. Dagan, 1978, Hydraulic conductivity of soils: Unified approach to the statistical models,Soil Sci. Soc. Am. J.42: 392–395.

    Google Scholar 

  • Neuman, S. P., and V. Di Federico, 2003, Multifaceted nature of hydrogeologic scaling and its interpretation,Rev. Geophys.41, art. No. 1014.

    Article  Google Scholar 

  • Nielsen, D. R., 1973, Spatial variability of field-measured soil-water properties,Hilgardia,42: 215–259.

    Google Scholar 

  • Nigmatullin, R. R., L. A. Dissado, and n. N. Soutougin, 1992, A fractal pore model for Archie's law in sedimentary rocks,J. Phys. D. Appl. Phys.25: 32–37.

    Article  Google Scholar 

  • Nimmo, J. R., 1997, Modeling structural influences on soil water retention, Soil Sci. Soc. Am. J.61: 712–719.

    Google Scholar 

  • Normand, J.-M., and H. J. Herrmann, 1990, Precise numerical determination of the superconducting exponent of percolation in three dimensions,Int. J. Mod. Phys. C1: 207–214.

    Google Scholar 

  • Olesen, S. R., and W. D. Kemper, 1968, Movement of nutrients to plant roots, Advances in Agronomy, Academic Press, Inc. Vol. 30, pp. 91.

    Google Scholar 

  • Paleologos, E. K., Neuman, S. P., and Tartakovsky, D. M., 1996, Effective hydraulic conductivity of bounded strongly heterogeneous porous media, Water Resources Research,32: 1333–1341.

    Article  Google Scholar 

  • Patil, A. S., K. M. King, and M. H. Miller, 1963, Self-diffusion of rubidium as influenced by soil moisture tension,Can. Soil Sci.,43: 44.

    Google Scholar 

  • Perrier, E., C. Mullon, and M. Rieu, 1995, Computer construction of fractal soil structures: simulation of their hydraulic and shrinkage properties, Water Resour, Res.,31: 2927–2943.

    Article  Google Scholar 

  • Pollak, M., 1972, A percolation treatment of dc hopping conduction.J. Non-Cryst. Solids 11: 1–24.

    Article  Google Scholar 

  • Pollak, M., 1987, Non-Crystalline Semiconductors, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Porter, L. K., W. D, Kemper, R. D. Jackson, and B. A. Stewart, 1960, Chloride diffusion in soils as influenced by moisture content,Soil Sci. Soc. Am. Proc. 24: 460.

    Google Scholar 

  • Prager, S., 1961,Phys. Fluids4: 1477.

    Article  Google Scholar 

  • Prakash, S, S. Havlin, M. Schwartz, and H. E. Stanley, 1992 Structural and dynamical properties of long-range correlated percolation,Phys. Rev.B 46: R1724.

    Google Scholar 

  • Proce C. J., R. W. Ritzi RW, D. F. Dominic, and Z. X. Dai, 2004, Modeling multiscale heterogeneity and aquifer interconnectivityGround Water42: 658–670.

    Google Scholar 

  • Raikh, M. E., and I. P. Ruzin, 1990, Size effect of the longitudinal hopping conduction of a narrow 2-dimensional channel,Phys. Rev. B,42: 11203–11207.

    Article  Google Scholar 

  • Ren, T., K. Noborio, and R. Horton, 1999, Measuring soil water content, electrical conductivity, and thermal properties with a thermo-time domain reflectometry probe,Soil Sci. Soc. Am. J.63: 450–457.

    Google Scholar 

  • Reynolds, P. J., W. Klein, and H. E. Stanley, 1977,J. Phys. C10: L167.

    Google Scholar 

  • Rieu, M., and G. Sposito, 1991, Fractal fragmentation, soil porosity, and soil water properties I. Theory.Soil Sci. Soc. Am. J.55: 1231.

    Google Scholar 

  • Roberts, J. J., 2002, Electrical properties of microporous rock as a function of saturation and temperature,J. Appl. Phys.91: 1687–1694.

    Article  Google Scholar 

  • Rockhold, M. L., Fayer, M. J., and Gee, G. W. 1988, Characterization of unsaturated hydraulic conductivity at the Hanford Site,PNL 6488Pacific Northwest National Laboratory, Richland, WA 99352.

    Google Scholar 

  • Romkens, M. J. M., and R. R. Bruce, 1964, Nitrate diffusivity in relation to moisture content of non-adsorbing porous media,Soil Sci.98: 332.

    Google Scholar 

  • Ross, P. J., and K. R. J. Smettem, Simple characterization of non-equilibrium water flow in structured soils, In: Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, ed. M. Th. van Genuchten, F. J. Leij, and L. Wu, U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, CA. p. 851–854.

    Google Scholar 

  • Rovey II, C. W., and D. S. Cherkauer, 1995, Scale dependency of hydraulic conductivity measurements,Ground Water33: 769–780.

    Google Scholar 

  • Rowell, D. L., M. W. Martin, and P. H. Nye, 1967, The measurement and mechanism of ion diffusion in soil, III. The effect of moisture content and soil solution concentration on the self-diffusion of ions in soils,J. Soil Sci. 18: 204.

    Google Scholar 

  • Ruffet, C.,Y. Gueguen, and M. Darot, 1991, Complex conductivity and fractal microstructures:Geophysics56: 758–768.

    Article  Google Scholar 

  • Sadeghi, A. M., D. E. Kissel, and M. L. Cabrerra, 1989, Esitmating molecular diffusion coefficients of urea in unsaturated soil,Soil Sci. Soc. Am. J.53: 15.

    Google Scholar 

  • Sahimi, M., 1983, (from Keffer et al.)

    Google Scholar 

  • Sahimi, M., 1993, Flow phenomena in rocks - From continuum models to fractals, percolation, cellular-automata, and simulated annealing.Rev Mod Phys65(4): 1393–1534. 1993.

    Article  Google Scholar 

  • Sahimi, M., 1995, Flow and Transport in Porous Media and Fractured Rock: from Classical Methods to Modern Approaches, VCH Weinheim, Federal Republic of Germany.

    Google Scholar 

  • Sahimi, M., and Y. C. Yortsos, 1990, Applications of fractal geometry to porous media: A review, Paper presented at the 1990 Annual Fall Meeting of the Society of Petroleum Engineers, New Orleans, LA.

    Google Scholar 

  • Sallam, A., W. A. Jury, and J. Letey. 1984. Measurement of gas diffusion coefficient under relatively low air-filled porosity.Soil Sci. Soc. Am. J48:3–6.

    Google Scholar 

  • Samper-Calvete, F. J., and M. A. Garcia-Vera, 1998, Inverse modeling of groundwater flow in the semiarid evaporitic closed basin of Los Monegros, Spain,Hydrogeology Journal6: 33–49.

    Article  Google Scholar 

  • Sanchez-Villa, X., J. Carrera, and J. P. Girardi, 1996, Scale effects in transmissivity,Journal ofHydrology183:1–22.

    Google Scholar 

  • Sangani, A. S., and A. Acrivos, 1982,Int. J. Multiphase Flow8: 343.

    Google Scholar 

  • Schad, H., and G. Teutsch, 1994, Effects of the investigation scale on pumping test results in heterogeneous porous aquifers,Journal of Hydrology159:61–77.

    Article  Google Scholar 

  • Schaefer, C. E., R. R. Arands, H. A. van der Sloot, and D. S. Kosson, 1995, Prediction and experimental validation of liquid-phase diffusion resistance in unsaturated soils,J. Contam. Hydrol.20: 145.

    Google Scholar 

  • Scher, H., and R. Zallen, 1970, Critical density in percolation processes, J. Chem. Phys.53, 3759.

    Article  Google Scholar 

  • Schulze-Makuch, D., Dissertation, Facies Dependent Scale Behavior of Hydraulic Conductivity and Longitudinal Dispersivity in the Carbonate Aquifer of Southeastern Wisconsin, University of Wisconsin, Milwaukee, 1996.

    Google Scholar 

  • Schulze-Makuch, D., D. A. Carlson, D. S. Cherkauer, and P. Malik, 1999, Scale dependency of hydraulic conductivity in heterogeneous media,Ground Water37: 904–919.

    Article  Google Scholar 

  • Schulze-Makuch, D., and D. S. Cherkauer, 1998, Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous, carbonate rocks,Hydrogeology Journal6: 204–215.

    Article  Google Scholar 

  • Seager, C.H., and Pike, G.E., 1974, Percolation and conductivity: A computer study II,Phys. Rev. B,10: 1435–46.

    Google Scholar 

  • Selyakov, V. I., and V. V. Kadet, 1996, Percolation Models for Transport in Porous Media: With Applications to Reservoir Engineering, Kluwer Academic, Boston.

    Google Scholar 

  • Sen, P. N., C. Scala, and M. H. Cohen, 1981, A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads,Geophysics,46: 781–795.

    Google Scholar 

  • Sen, P. N., J. N. Roberts, and B. I. Halperin, 1985, Non-universal critical exponents for transport in percolating systems with a distribution of bond strengths,Phys. Rev. B.32: 3306–3308.

    Article  Google Scholar 

  • Shah, C. B., and Yortsos, Y, C., 1996, The permeability of strongly disordered systems,Phys. Fluids8: 280–282.

    Article  Google Scholar 

  • Shante, V. K. S., and S. Kirkpatrick, 1971,Adv. Phys.20. 325.

    Article  Google Scholar 

  • Sharma, M. L., 1966, Influence of soil structure on water retention, water movement, and thermodynamic properties of absorbed water, Ph. D. Thesis, Univ. Hawaii, 190 pp. Univ. Microfilms, Ann Arbor, Mich. [Diss. Abst. 28 17600B (1966)].

    Google Scholar 

  • Shklovskii, B. I., and A. L. Efros, 1984,Electronic Properties of Doped Semiconductors, Springer, Heidelberg.

    Google Scholar 

  • Shouse, P. J., Ellsworth, T. R., and Jobes, J. A., 1994, Steady-State infiltration as a function of measurement scale,Soil Science,157: 129–136.

    Google Scholar 

  • Silliman, S. E., 1990, The influence of grid discretization on the percolation probability within discrete random fields,J. Hydrol.,113: 177–191.

    Article  Google Scholar 

  • Skaggs, T. H., 2003, Effects of finite system size and finite heterogeneity on the conductivity of broadly distributed resistor networks,Physica B, 338, 266–269.

    Article  Google Scholar 

  • Skal, A. S., and B. I. Shklovskii, 1975, Topology of an infinite cluster in the theory of percolation and its relationship to the theory of hopping conduction,Sov. Phys. Semicond.8, 1029–32.

    Google Scholar 

  • So, H. B., and P. H. Nye, 1989, The effect of bulk density, water content and soil type on the diffusion of chloride in soil,J. Soil Sci.40: 743.

    Google Scholar 

  • Stauffer, D., 1979, Scaling theory of percolation clusters,Physics Reports54: 1–74.

    Article  Google Scholar 

  • Stauffer, D., and A. Aharony, 1994,Introduction to percolation theory, 2ndedition, Taylor and Francis.

    Google Scholar 

  • Steenhuis, T., Hunt, A. G., Parlange, J.-Y., and Ewing, R. P., 2004, Assessment of the Application of Percolation Theory to Water-Repellent Soils, accepted toAustralian Journal of Soil Research, Oct., 2003.

    Google Scholar 

  • Steriotis, T. A., F. K. Katsaros, A. K. Stubos, A. Ch. Mitropoulos, and N. K Kanellopoulos, 1997, A novel experimental technique for the measurement of the single-phase gas relative permeability of porous solids,Meas. Sc. Technol.8: 168–173.

    Google Scholar 

  • Tartakovsky, D. M., and Neuman, S. P., 1998, Transient effective hydraulic conductivity under slowly and rapidly varying mean gradients in bounded three-dimensional random media,Water Resources Research34: 21–32.

    Google Scholar 

  • Thompson, A. H., A. J. Katz, and C. E. Krohn, 1987, Microgeometry and transport in sedimentary rock,Adv. Phys.36, 625.

    Article  Google Scholar 

  • Tidwell, V. C., and J. L. Wilson, 1997, Laboratory method for investigating permeability upscaling,Water Resour. Res.33: 1067–1616.

    Article  Google Scholar 

  • Tidwell, V. C., and Wilson, J. L., 2000, Heterogeneity, permeability patterns, and permeability upscaling: Physical characterization of a block of Massillon sandstone exhibiting nested scales of heterogeneity,SPE Reservoir Evaluation and Engineering, 3: 283–291.

    Google Scholar 

  • Tokunaga, T., and Wan, J., 1997, Water film flow along fracture surfaces of porous rock,Water Resour. Res.33: 1287–95.

    Google Scholar 

  • Topp, G. C., A. Klute, and D. B. Peters, 1967, Comparison of water content-pressure head data obtained by equilibrium, steady-state and unsteady state methods.Soil Sci. Soc. Am. Proc.31: 312–314.

    Google Scholar 

  • Torquato, S., and B. Lu, 1990, Rigorous bounds on the fluid permeability: Effect of polydispersivity in grain size,Phys. Fluids A2: 487–490.

    Article  Google Scholar 

  • Toulouse, G., 1974,Nuovo Cimento B23: 234.

    Google Scholar 

  • Turcotte, D. L., 1986. Fractals and fragmentation.J. Geophys. Res.91: 1921–1926.

    Google Scholar 

  • Tyler, S. W., and S. W. Wheatcraft, 1990. Fractal processes in soil water retention.Water Resour. Res.26: 1045–1054.

    Article  Google Scholar 

  • Tyler S. W., and S. W. Wheatcraft, 1992, Fractal Scaling Of Soil Particle-Size Distributions - Analysis And Limitations,SoilSci. Soc. Am. J.,56: 362–369.

    Google Scholar 

  • University of Florida Web Address http://edis.ifas.ufl.edu/SS109

    Google Scholar 

  • van Genuchten, MT, A closed form equation for predicting the hydraulic conductivity of unsaturated soils,Soil Sci. Am. J. 1980,44, 892–898.

    Google Scholar 

  • van Genuchten, M. Th., F. J. Leij, and S. R. Yates, 1991, The RETC code for quantifying the hydraulic functions of unsaturated soils, US EPA 000/091/000, ADA OK, 83pp.

    Google Scholar 

  • Vyssotsky, V. A., Gordon, S. B., Frisch, H. L., and Hammersley, J. M., 1961, Critical percolation probabilities (bond problem)Phys. Rev.123: 1566–7.

    Article  Google Scholar 

  • Warncke, D. D., and S. A. Barber, 1972, Diffusion of zinc in soil I. The influence of soil moisture,Soil Sci. Soc. Am. J.36: 39.

    Google Scholar 

  • Warrick, A. A., 2002,Soil Physics Companion, Boca Raton, CRC Press.

    Google Scholar 

  • Weissberg, H. L., and S. Prager, 1962,Phys. Fluids,5: 1390.

    Google Scholar 

  • Weisstein. E. W., “Hexagonal Close Packing.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/HexagonalClose"–Packing.html

    Google Scholar 

  • Werner, D, Grathwohl, P., and Hoenhener, P., 2004, Review of field methods for the determination of the tortuosity and effective gas-phase diffusivity in the vadose zone,Vadose Zone Journal3: 1240–1248.

    Google Scholar 

  • Wildenschild, D., J. W. Hopmans, 1999, Flow rate dependence of hydraulic properties of unsaturated porous media, In: Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, ed. M. Th. van Genuchten, F. J. Leij, and L. Wu, U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, CA. p. 893–904.

    Google Scholar 

  • Wilkinson, D., 1986, Percolation effects in immiscible displacement,Phys. Rev. A 34: 1380–1391.

    Article  Google Scholar 

  • Willett, S. D.; Chapman, D. S., 1987, Temperatures, fluid flow and the thermal history of the Uinta Basin,Collection Colloques et Seminaires - Institut Francais du PetroleVol. 45. Paris : Technip.

    Google Scholar 

  • Wong, P., J. Koplik, and J. P. Tomanic, 1984, Conductivity and permeability of rocks,Phys. Rev. B30: 6606–6614.

    Google Scholar 

  • Wyllie, M. R. J., and G. H. F. Gardner, 1958, World Oil (March and April Issues), p. 2.

    Google Scholar 

  • Yabusaki, S., and T. Scheibe, 1998, Scaling of flow and transport behavior in heterogeneous groundwater systems, 22: 223–238.

    Google Scholar 

  • Zhang, D., R. Zhang, S. Chen, and W. E. Soll, 2000, Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV,Geophys. Res. Lett., 27:1195–1198.

    Google Scholar 

  • Zick, A. A., and G. M. Homsy, 1982,J. Fluid Mech.115: 13.

    Google Scholar 

  • Zlotnik, V. A., B. R. Zurbuchen, T. Ptak, and G. Teutsch, 2000, Support volume and scale effect in hydraulic conductivity: experimental aspects, In D. Zhang and C. L. Winter, eds., Theory Modeling, and Field Investigation in Hydrogeology: A Special Volume in Honor of Shlomo P. Neuman's 60th Birthday: Boulder, Colorado, Geological Society of America Special Paper 348, 191–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

G. Hunt, A. References. In: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, vol 674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11430957_9

Download citation

  • DOI: https://doi.org/10.1007/11430957_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26110-0

  • Online ISBN: 978-3-540-32405-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics