Advertisement

Computational Options for Bioinformatics Research in Evolutionary Biology

  • Michael A. Thomas
  • Mitch D. Day
  • Luobin Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)

Abstract

This review will introduce areas of evolutionary research that require substantial computing resources using the examples of phylogenetic reconstruction and homology searching. We will discuss the commonly used analytical approaches and computational tools. We will discuss two computing environments employed by academic evolutionary researchers. We present a simple empirical demonstration of scalable cluster computing using the Apple Xserve solution for phylogenetic reconstruction and homology searching. We conclude with comments about tool development for evolutionary biology and Open Source strategies to promote scientific inquiry.

Keywords

Basic Local Alignment Search Tool Phylogenetic Reconstruction Computational Option Basic Local Alignment Search Tool Search Bioinformatics Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dayhoff, M.: Survey of new data and computer methods of analysis. In: Foundation, N.B.R. (ed.) Atlas of Protein Sequence and Structure, vol. 5. Georgetown University, Washington (1978)Google Scholar
  2. 2.
    Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  3. 3.
    International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004)Google Scholar
  4. 4.
    Imanishi, T., Itoh, T., Suzuki, Y., et al.: Integrative annotation of 21,037 human genes validated by full-length cdna clones. PLoS Biol. 2, E162 (2004)Google Scholar
  5. 5.
    Thomas, M., Weston, B., Joseph, M., et al.: Evolutionary dynamics of oncogenes and tumor suppressor genes: higher intensities of purifying selection than other genes. Mol. Biol. Evol. 20, 964–968 (2003)CrossRefGoogle Scholar
  6. 6.
    Jimenez-Sanchez, G., Childs, B., Valle, D.: Human disease genes. Nature 409, 853–855 (2001)CrossRefGoogle Scholar
  7. 7.
    Feany, M., Bender, W.: A drosophila model of parkinson’s disease. Nature 404, 394–398 (2000)CrossRefGoogle Scholar
  8. 8.
    GO Consortium: Creating the gene ontology resource: design and implementation. Genome. Res. 11, 1425–33 (2001)Google Scholar
  9. 9.
    Stein, L., Mungall, C., Shu, S.Q., et al.: The generic genome browser: A building block for a model organism system database. Genome. Res. 12, 1599–1610 (2002)CrossRefGoogle Scholar
  10. 10.
    Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford, New York (2000)Google Scholar
  11. 11.
    Felsenstein, J.: Inferring Phylogenies. Sinauer, New York (2004)Google Scholar
  12. 12.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)Google Scholar
  13. 13.
    Hastings, W.: Monte carlo s ampling methods using markov chains and their applications. Biometrika 57, 97–109 (1970)Google Scholar
  14. 14.
    Jukes, T., Cantor, C.: Evolution of protein molecules. In: Munro, H. (ed.) Mamalian Protein Metabolism, pp. 21–132. Academic Press, New York (1969)Google Scholar
  15. 15.
    Endo, T.: Probabilistic nucleotide assembling method for sequencing by hybridization. Bioinformatics 20, 2181–2188 (2004)CrossRefGoogle Scholar
  16. 16.
    Venter, J., Remmington, K., Heidelberg, J., et al.: Environmental genome shotgun sequencing of the sargasso sea. Science 304, 66–74 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael A. Thomas
    • 1
  • Mitch D. Day
    • 1
  • Luobin Yang
    • 1
  1. 1.Department of Biological SciencesIdaho State UniversityPocatelloUSA

Personalised recommendations