Advertisement

A 3D User Interface for Visualizing Neuron Location in Invertebrate Ganglia

  • Jason A. Pamplin
  • Ying Zhu
  • Paul S. Katz
  • Rajshekhar Sunderraman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)

Abstract

Invertebrate nervous systems serve as important models for neuroscience research because they are comprised of relatively small numbers of individually identified neurons. There is no universal means of documenting locations of individual neurons that allows variability between specimens and can be generalized to different species. We present a new technique for visualizing and documenting neuron location. First, we describe a 3D user interface that allows neuroscientists to directly mark neuron locations on a 3D deformable model. A new mapping scheme is proposed that specifies the location of a neuron in a common coordinate system that accommodates the individual variability in size and shape of ganglia.

References

  1. 1.
    Pittenger, C., Kandel, E.R.: In Search of General Mechanisms for Long-lasting Plasticity: Aplysia and the hippocampus. Philosophical Transactions of Royal Society of London, Series B: Biological Science 358(1432), 757–763 (2003)CrossRefGoogle Scholar
  2. 2.
    Getting, P.A.: A Network Oscillator Underlying Swimming in Tritonia. In: Jacklet, J.W. (ed.) Neuronal and Cellular Oscillators, pp. 215–236. Marcel Dekker, Inc., New York (1989)Google Scholar
  3. 3.
    Bjaalie, J.G.: Localization in the Brain: New Solutions Emerging. Nature Reviews: Neuroscience 3, 322–325 (2002)CrossRefGoogle Scholar
  4. 4.
    Davatzikos, C.: Spatial Normalization of 3D Brain Images Using Deformable Models. Journal of Computer Assisted Tomography 20(4), 656–665 (1996)CrossRefGoogle Scholar
  5. 5.
    Gee, J.C., Reivich, M., Bajcsy, R.: Elastically Deforming an Atlas to Match Anatomical Brain Images. Journal of Computer Assisted Tomography 17(2), 225–236 (2003)CrossRefGoogle Scholar
  6. 6.
    Roland, P.E., Zilles, K.: Brain Atlases - a New Research Tool. Trends in Neuroscience 17(11), 458–467 (1994)CrossRefGoogle Scholar
  7. 7.
    Payne, B.A., Toga, A.W.: Surface Mapping Brain Function on 3D Models. IEEE Computer Graphics Applications 10(5), 33–41 (1990)CrossRefGoogle Scholar
  8. 8.
    Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publishers, New York (1988)Google Scholar
  9. 9.
    Toga, A.W.: Brain Warping. Academic Press, New York (1998)Google Scholar
  10. 10.
    Thompson, P., Toga, A.W.: A Surface-based Technique for Warping Three-dimensional Images of the Brain. IEEE Transactions on Medical Imaging 15(4), 402–417 (1996)CrossRefGoogle Scholar
  11. 11.
    Singh, K., Fiume, E.: Wires: A Geometric Deformation Technique. In: Proceedings of the 25th ACM Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 405–414 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jason A. Pamplin
    • 1
  • Ying Zhu
    • 1
  • Paul S. Katz
    • 2
  • Rajshekhar Sunderraman
    • 1
  1. 1.Departments of Computer ScienceGeorgia State UniversityAtlantaUSA
  2. 2.Departments of BiologyGeorgia State UniversityAtlantaUSA

Personalised recommendations