Advertisement

Revolute Quadric Decomposition of Canal Surfaces and Its Applications

  • Jinyuan Jia
  • Ajay Joneja
  • Kai Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)

Abstract

Surfaces subdivision is an important means for geometric computing of surfaces in CAD. This paper proposes a new quadric subdivision for canal surfaces in this paper, RQ-sphere decomposition, that subdivides canal surfaces as a set of truncated revolute quadric with joint spheres. Experimental results show that the RQ-sphere decomposition is better than existing methods.

Keywords

Medial Axis Decomposition Scheme Spine Curve Joint Sphere Surface Subdivision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bangert, C., Prautzsch, H.: Quadric Spline. CAGD 16, 497–515 (1999)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ferly, E., Gascuel, C.M.-P., Attali, D.: Skeletal Reconstruction of Branching Shapes. In: Implicit Surfaces 1996, Eindhoven, Netherlands, October 1996, pp. 127–142 (1996)Google Scholar
  3. 3.
    Gelston, S.M., Dutta, D.: Boundary Surface Recovery from Skeleton Curves and Surfaces. CAGD 12, 27–51 (1995)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Guo, B.: Quadric and Cubic Bitetrahedral Patches. The Visual Computer 7, 253–262 (1995)CrossRefGoogle Scholar
  5. 5.
    Heo, H.S., Hong, S.J., Seong, J.K., Kim, M.S.: The Intersection of Two Ringed Surfaces and Some Related Problems. Graphical Model 63, 228–244 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Johnstone, J.: A New Intersection Algorithm for Cyclides and Swept Surfaces Using Circle Decomposition. CAGD 10, 1–24 (1993)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Jia, J.Y., Baciu, G., Kwok, K.W.: Quadric Decomposition for Computing The Intersections of Surfaces of Revolution. Graphical Models 55, 363–383 (2004)Google Scholar
  8. 8.
    Kim, K.-J., Lee, I.-K.: The Perspective Silhouette of A Canal Surface. Computer Graphics Forum 22, 15–22 (2003)CrossRefGoogle Scholar
  9. 9.
    Kim, K.-J., Lee, I.-K.: Computing Isophotes of Surface of Revolution and Canal Surface. CAD 5, 215–223 (2003)Google Scholar
  10. 10.
    Kim, K.J.: Minimum Distance Between A Canal Surface and A Simple Surface. CAD 35, 871–879 (2003)zbMATHGoogle Scholar
  11. 11.
    Max, N.: Cone-Spheres. ACM SIGGRAPH Computer Graphics 24, 59–62 (1991)CrossRefGoogle Scholar
  12. 12.
    Nishita, T., Hohan, H.: A Scan Line Algorithm for Rendering Curved Tubular Objects. In: Proceedings of Pacific Graphics, pp. 92–101 (1999)Google Scholar
  13. 13.
    Paluszny, M., Bühler, K.: Canal Surfaces and Inversive Geometry. In: Mathematical Methods for Curves and Surfaces II, pp. 367–375 (1998)Google Scholar
  14. 14.
    Powell, M.J.D., Sabin, M.A.: Piecewise Quadratic Approximations on Triangles. ACM Transaction on Mathematical Software 3, 316–325 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sed1erberg, T.: Piecewise Algebraic Surface Patches. CAGD 2, 53–60 (1985), This work was partially supported by Liaoning Educational Science and Technology FundzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jinyuan Jia
    • 1
  • Ajay Joneja
    • 2
  • Kai Tang
    • 2
  1. 1.Zhuhai College of Jilin UniversityZhuhaiP. R. China
  2. 2.The Hong Kong University of Science and TechnologyKowloon, Hong KongP. R. China

Personalised recommendations