Advertisement

Mesh Smoothing via Adaptive Bilateral Filtering

  • Qibin Hou
  • Li Bai
  • Yangsheng Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)

Abstract

In this paper, we present an adaptive bilateral filtering algorithm that can be used to remove unavoidable noise from 3D mesh data generated by initial stages. Selecting the parameters for bilateral filters automatically, this algorithm smoothes meshes in the normal field using anisotropic character of local neighborhood triangles. Experimental results demonstrate that the proposed method remove light noise from meshes and reserve fine features of meshes as good as best results of other methods, with the advantage of none user-assisted parameters setting. Visual comparisons display that the method proposed in this paper performs better than other smoothing method for heavy noisy mesh.

Keywords

Minimal Description Length Bilateral Filter Irregular Mesh Mesh Smoothing Minimal Description Length Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real Time 3D Model Acquisition. ACM Trans. Graphics 21(3), 438-446 (2002)Google Scholar
  2. 2.
    Taubin, G.: A Signal Processing Approach to Fair Surface Design. In: Processings of SIGGRAPH 1995, pp. 351–358 (1995)Google Scholar
  3. 3.
    Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In: Proceedings of SIGGRAPH 1999, pp. 317–324 (1999)Google Scholar
  4. 4.
    Ohtake, Y., Belyaev, A.G., Seidel, H.P.: Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter. In: Vision, Modeling, and Visualization 2002, Erlangen, Germany, November 2002, pp. 203–210 (2002)Google Scholar
  5. 5.
    Taubin, G.: Linear Anisotropic Mesh Filtering. IBM Research Report RC22213 (W0110-051), IBM (October 2001)Google Scholar
  6. 6.
    Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric Surface Smoothing via Anisotropic Diffusioin of Normals. In: Proceedings of the IEEE Visualization, pp. 125–132 (2002)Google Scholar
  7. 7.
    Zhang, H., Fiume, E.L.: Mesh Smoothing with Shape or Feature Preservation. In: Vince, J., Earnshaw, R. (eds.) Advances in Modeling, Animatioin, and Rendering, pp. 167–182 (2002)Google Scholar
  8. 8.
    Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral Mesh Denoising. In: Proceedings of ACM SIGGRAPH 2003 (2003)Google Scholar
  9. 9.
    Jones, T., Durand, F., Desbrun, M.: Non-iterative, Feature-preserving Mesh Smoothing. ACM Trans. Graphics 22(3), 943–949 (2003)CrossRefGoogle Scholar
  10. 10.
    Bajaj, C., Xu, G.: Anisotropic Diffusion on Surfaces and Functions on Surfaces. ACM Trans. Graphics 22(1), 4–32 (2003)CrossRefGoogle Scholar
  11. 11.
    Tomasi, C., Manduchi, R.: Bilateral Filtering for Gray and Color Images. In: Proc. IEEE Int. Conf. On Computer Vision, pp. 836–846 (1998)Google Scholar
  12. 12.
    Gomez, G.: Local Smoothness in Terms of Variance: the Adaptive Gaussian Filter. In: Proc. Of the BMVC 2000, vol. 2, pp. 815–824 (2000)Google Scholar
  13. 13.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipies in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1993)Google Scholar
  14. 14.
    Durand, F., Norsey, J.: Fast Bilateral Filtering for the Display of High-Dynamic-Range Images. ACM Trans. Graphics 21(3), 257–266 (2002)CrossRefGoogle Scholar
  15. 15.
    Belyaev, A., Ohtake, Y.: A Comparison of Mesh Smoothing Methods. In: Israel-Korea Bi-National Conference on Geometric Modeling and Computer Graphics Tel-Aviv, February 2003, pp. 83–87 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Qibin Hou
    • 1
  • Li Bai
    • 1
  • Yangsheng Wang
    • 2
  1. 1.School of Computer Science and ITUniversity of NottinghamNottinghamUK
  2. 2.Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations