Advertisement

Semantic Annotation of a Natural Language Corpus for Knowledge Extraction

  • Borja Navarro
  • Patricio Martínez-Barco
  • Manuel Palomar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3513)

Abstract

Knowledge management (ontologies development, disambiguation of words, semantic web, etc.) must extract knowledge from somewhere. The main source of knowledge are natural language texts, in which humans express how they view and conceptualize the world. However, the automatic extraction of knowledge from texts is not a trivial task. In this paper we present a semantic annotated corpus as a source for knowledge extraction. Semantic is the bridge between linguistic input and knowledge (concepts, real world). A corpus with semantic information annotated is a useful resource to extract knowledge from a real context: it is a semi-structured database that offers deep information about human knowledge, concepts and relations between them.

Keywords

Semantic Information Semantic Annotation Word Sense Disambiguation Real Context Knowledge Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bateman, J.A.: On the relationship between ontology construction and natural language: a socio-semiotic view. International Journal of Human-Computer Studies 43, 929–944 (1995)CrossRefGoogle Scholar
  2. 2.
    Nirenburg, S., Raskin, V.: Ontological semantics. MIT Press, Cambridge (2004)Google Scholar
  3. 3.
    Navarro, B., Civit, M., Martí, M.A., Fernández, B., Marcos, R.: Syntactic, semantic and pragmatic annotation in Cast3LB. In: Proceedings of the Shallow Processing of Large Corpora. A Corpus Linguistics WorkShop, Lancaster, UK (2003)Google Scholar
  4. 4.
    Vossen, P.: EuroWordNet: Building a Multilingual Database with WordNets for European Languages. The ELRA Newsletter 3 (1998)Google Scholar
  5. 5.
    Sebastián, N., Martí, M.A., Carreiras, M.F., Cuetos, F.: 2000 LEXESP: Léxico Informatizado del Español. Edicions de la Universitat de Barcelona, Barcelona (2000) Google Scholar
  6. 6.
    Kilgarriff, A.: Gold standard datasets for evaluating word sense disambiguation programs. Computer Speech and Language. Special Use on Evaluation 12, 453–472 (1998)Google Scholar
  7. 7.
    Carletta, J.: Assessing agreement on classification tasks: the kappa statistics. Conputational Linguistics 22, 249–254 (1996)Google Scholar
  8. 8.
    Cohen, J.: A coefficient of agreement for nominal scales. Educational Psychological Measurement 20 (1960)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Borja Navarro
    • 1
  • Patricio Martínez-Barco
    • 1
  • Manuel Palomar
    • 1
  1. 1.Grupo de Investigación en Procesamiento del Lenguaje y Sistemas de Información, Departamento de Lenguajes y Sistemas InformáticosUniversity of AlicanteSpain

Personalised recommendations