Improving Question Answering Using Named Entity Recognition

  • Antonio Toral
  • Elisa Noguera
  • Fernando Llopis
  • Rafael Muñoz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3513)


This paper studies the use of Named Entity Recognition (NER) for the Question Anwering (QA) task in Spanish texts. NER applied as a preprocessing step not only helps to detect the answer to the question but also decreases the amount of data to be considered by QA. Our proposal reduces a 26% the quantity of data and moreover increases a 9% the efficiency of the system.


Entity Type Query Term Question Answering Name Entity Recognition Entity Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borthwick, A.: A Maximum Entropy Approach to Named Entity Recognition. PhD thesis, New York University (September 1999) Google Scholar
  2. 2.
    Callan, J.P.: Passage-level evidence in document retrieval. In: Proceedings of the 17th annual conference on Research and Development in Information Retrieval, London, UK, pp. 302–310. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Chinchor, N.: Overview of muc-7. In: Proceedings of the Seventh Message Understanding Conference, MUC-7 (1998)Google Scholar
  4. 4.
    CLEF. Workshop of cross-language evaluation forum (clef 2003). In: Workshop of Cross-Language Evaluation Forum (CLEF 2003), Lecture notes in Computer Science, Trondheim, Nordway,Springer, Heidelberg (2003) Google Scholar
  5. 5.
    Kaskziel, M., Zobel, J.: Passage retrieval revisited. In: Proceedings of the 20th annual International ACM Philadelphia SIGIR, pp. 178–185 (1997)Google Scholar
  6. 6.
    Lancaster, F.W.: Information Retrieval Systems: Characteristics, Testing and Evaluation. John Wiley and Sons, New York (1979)Google Scholar
  7. 7.
    Llopis, F.: IR-n: Un Sistema de Recuperación de Información Basado en Pasajes. PhD thesis, University of Alicante (2003) Google Scholar
  8. 8.
    Llopis, F., Vicedo, J.L., Ferrández, A.: Passage selection to improve question answering. In: Proceedings of the Workshop on Multilingual Summarization and Question Answering, Taipei, Taiwan, pp. 11–16. Colling (2002)Google Scholar
  9. 9.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–130 (1980)Google Scholar
  10. 10.
    Roberston, S., Walker, S., Beaulieu, M.: Okapi at trec-7. In: Seventh Text RETrieval Conference, vol. 500-242, pp. 253–264. National Institute of Standard and Technology, Gaithersburg, USA (1998)Google Scholar
  11. 11.
    Salton, G.: Automatic text processing: The transformation, analysis, and retrieval of information by computer (1989) Google Scholar
  12. 12.
    Singhal, A., Buckley, C., Mitra, M.: Buckley, and M. Mitra. Pivoted document length normalization. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Developement in Information Retrieval. Experimental Studies, pp. 21–29 (1996)Google Scholar
  13. 13.
    TREC-10. Tenth Text REtrieval Conference. In Tenth Text REtrieval Conference, volume 500-250 of NIST Special Publication, Gaithersburg, USA (November 2002), National Institute of Standards and TechnologyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Antonio Toral
    • 1
  • Elisa Noguera
    • 1
  • Fernando Llopis
    • 1
  • Rafael Muñoz
    • 1
  1. 1.Grupo de investigación en Procesamiento del Lenguaje Natural y Sistemas de Información, Departamento de Lenguajes y Sistemas InformáticosUniversity of AlicanteSpain

Personalised recommendations